Skip to main content
Advanced Search

Filters: Tags: Washington DC (X)

81 results (11ms)   

View Results as: JSON ATOM CSV
thumbnail
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Clean and Plentiful Water category in this web service includes layers illustrating the ecosystems and natural resources that filter and regulate water, the need or demand for clean and plentiful water, the impacts associated with water quality, and factors that place stress on water quality and supply. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States. Additional descriptive information about each attribute in this web service is located within each web...
Types: Citation; Tags: 12-digit HUCs, Agriculture, Air, Alabama, Alaska, All tags...
thumbnail
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The Food, Fuel, and Materials category in this web service includes layers illustrating the ecosystems and natural resources that provide or support the production of food, fuel, or other materials, the need or demand for these items, the impacts associated with their presence and accessibility, and factors that place stress on the natural environment's capability to provide these benefits. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States. Additional descriptive...
Types: Citation; Tags: 12-digit HUCs, Agriculture, Air, Alabama, Alaska, All tags...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018 Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). A recently published extension of WRTDS allows users to separate these estimates into high- and low-flow conditions. This data release contains (1) a table of daily high- and low-flow concentration and load estimates for NTN stations between 1985 - 2018 and (2) an R file that contains...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. The file containing annual loads for all applicable NTN monitoring stations is provided in the "Attached Files" section. First posted: July...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Yields (represents the mass of constituent transported from a unit area of a given watershed) are used to compare the export loads from one basin to another. Yield results are obtained by dividing the annual load (pounds) of a given constituent by the respective watershed area (acres)...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2021. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2022. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Ecological flow (EFlow) statistics have been designated to characterize the magnitude, frequency, and duration of extreme high- and low-flows, the timing of seasonal flows, and the consistency of the historic regime. This Child Item contains a table of 178 EFlows for the time periods 1940-1969, 1970-1999, and 2000-2018, with absolute and percent change between periods, where applicable. Statistics were computed by Water Year (WY) for all 178 metrics and absolute and percent change were calculated by comparing metrics between combinations of two of the three time periods (1940-1969 and 1970-1999; 1940-1969 and 2000-2018; 1970-1999 and 2000-2018). Streamgages from the original dataset (n = 409) were excluded from...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2016. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2017. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2023. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds and were estimated using the WRTDS method with Kalman filtering. To determine the trend in loads, the annual load results are...
thumbnail
This dataset consists of historical estimates and future projections of land use and climate data summarized within the 1:100,000 National Hydrography Dataset Version 2 (NHDPlusV2) framework for catchments and upstream accumulated watersheds. Historical land use data are for the year 2005 and future land use projections are for the years 2030, 2060, and 2090. The projections offer a unique combination of thematic detail (17 land-use and land-cover classes). Historical climate estimates are averaged over the time period 1980-1999 and future climate projections are averaged over 20-year periods centered around the years 2030, 2060, and 2090. Climate data include seasonal measures of average air temperature (℃) and...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2022. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring (RIM) Network stations for the period 1985 through 2020. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.


map background search result map search result map EnviroAtlas - Clean and Plentiful Water Metrics for the Conterminous United States EnviroAtlas - Food, Fuel, and Materials Metrics for Conterminous United States Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Chesapeake Bay River Input Monitoring Network 1985-2017: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2017: Short- and long-term trends Chesapeake Bay River Input Monitoring Network 1985-2018: WRTDS input data Chesapeake Bay Watershed historical and future projected land use and climate data summarized for NHDPlusV2 catchments Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay Nontidal Network 1985-2018: Short- and long-term trends Chesapeake Bay Nontidal Network 1985-2018: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2019: WRTDS output data Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Chesapeake Bay Watershed Non-Tidal Network Station Catchments Ecological Flow Statistics at USGS Streamgages within the Chesapeake Bay Watershed (1940-2018) Chesapeake Bay River Input Monitoring Network 1985-2020: Annual loads Chesapeake Bay Nontidal Network 1985-2020: Annual loads (ver. 2.0, January 2023) Chesapeake Bay River Input Monitoring Network 1985-2021: WRTDS output data Chesapeake Bay River Input Monitoring Network 1985-2022: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2022: Monthly loads Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2023 Chesapeake Bay Nontidal Network 1985-2016: Short- and long-term trends Chesapeake Bay River Input Monitoring Network 1985-2017: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2017: Short- and long-term trends Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay River Input Monitoring Network 1985-2019: WRTDS output data Chesapeake Bay Nontidal Network 1985 – 2018: Daily High-Flow and Low-Flow Concentration and Load Estimates (ver. 1.1, November 2021) Ecological Flow Statistics at USGS Streamgages within the Chesapeake Bay Watershed (1940-2018) Chesapeake Bay River Input Monitoring Network 1985-2020: Annual loads Chesapeake Bay Nontidal Network 1985-2020: Annual loads (ver. 2.0, January 2023) Chesapeake Bay River Input Monitoring Network 1985-2022: Annual loads Chesapeake Bay River Input Monitoring Network 1985-2022: Monthly loads Chesapeake Bay Watershed historical and future projected land use and climate data summarized for NHDPlusV2 catchments Chesapeake Bay River Input Monitoring Network 1985-2018: WRTDS input data Chesapeake Bay Nontidal Network 1985-2018: Short- and long-term trends Chesapeake Bay Nontidal Network 1985-2018: Average annual yields Chesapeake Bay River Input Monitoring Network 1985-2021: WRTDS output data Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay River Input Monitoring stations: Water years 1985-2023 Chesapeake Bay Watershed Non-Tidal Network Station Catchments EnviroAtlas - Clean and Plentiful Water Metrics for the Conterminous United States EnviroAtlas - Food, Fuel, and Materials Metrics for Conterminous United States