Skip to main content
Advanced Search

Filters: Tags: Tribes and Tribal Organizations (X)

114 results (10ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The Klamath Basin in Oregon and California is home to a rich abundance of natural and cultural resources, many of which are vulnerable to present and future climate change. Climate change also threatens traditional ways of life for tribal communities, who have deep connections to the region. This project sought to increase the effectiveness of regional climate change adaptation and planning by (1) developing ways to integrate traditional ecological knowledge (TEK) with western science in decision making, (2) building partnerships between tribal, academic, and government institutions, and (3) increasing future capacity to respond to climate change by engaging tribal youth. Through this project, the Quartz Valley...
Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential...
The Gulf Coast Vulnerability Assessment (GCVA or “Assessment”) is a collaborative effort to evaluate the vulnerability of four key ecosystems and eleven associated species to the effects of climate change, sea level rise, and land use change across the U.S. portion of the Gulf of Mexico. It is designed to inform land managers, researchers, and decision makers about the relative vulnerability across individual species and ecosystems and how that vulnerability varies spatially across the Gulf region for each. The GCVA is a qualitative assessment that compiles the expert opinions of managers, scientists, administrators, and others. The results presented herein represent informed opinions of the experts engaged, and...
Tribal nations have been actively engaged in efforts to understand climate risks to their natural and cultural resources, and what they can do to prepare. We have carefully selected a suite of resources that may be useful to tribes at each stage in the process of evaluating their vulnerability to climate change—from tribes just getting started to those well on their way.
The Eastern Shoshone and Northern Arapaho Tribes on the Wind River Indian Reservation in Wyoming are preparing for drought and other climate fluctuations with help from a broad coalition of scientists. Read More: https://www.drought.gov/drought/sites/drought.gov.drought/files/media/whatisnidis/Newsletter/October%202015%20v4.pdf
Members of the Eastern Shoshone and Northern Arapaho Tribes have been working with an interdisciplinary team of social, ecological, and climate scientists from the North Central CSC, the High Plains Regional Climate Center, and the National Drought Mitigation Center along with other university and agency partners to prepare regular climate and drought summaries to aid in managing water resources on the Wind River Reservation and in surrounding areas.
thumbnail
Grasslands in the northern Great Plains are important ecosystems that support local economies, tribal communities, livestock grazing, diverse plant and animal communities, and large-scale migrations of big game ungulates, grassland birds, and waterfowl. Climate change and variability impact how people and animals live on and interact with grasslands, and can bring more frequent droughts, fires, or new plant species that make managing these landscapes challenging. Understanding how climate change and variability will impact grassland ecosystems and their management in the 21st century first requires a synthesis of what is known across all of these scales and a gap analysis to identify key areas of focus for future...
This capacity-building activity supported three tribal college and university (TCU) mini-­grants to initiate student phenological and meteorological observation projects in support of climate change research, to document impacts of climate change and development of indigenous geography curriculum. Students made observations of culturally and/or traditionally significant plants to generate data sets for use in climate change impact assessment of these plants and plant communities. The activity contributed to the larger national efforts of the Smithsonian National Museum of the American Indian’s “Indigenous Geography” curricula, by engaging with students at tribal colleges to explore the linkage between the “seasonality”...
Abstract (From http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-15-0062.1): Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall...
thumbnail
The Sqigwts 3-D Landscape is an interactive three-dimensional experience developed to provide an opportunity to effectively learn about the important cultural significance of sqigwts, the water potato (Sagittaria latifolia), to the Schitsu’umsh or Coeur d’Alene Indian Tribe (of the Pacific Northwest USA). The goal is to provide information on the potential vulnerability of this species to climate change and of the Schitsu’umsh living relationship with it. Schitsu’umsh knowledge and practice is called hnkhwelkhwlnet, meaning “our ways of life in the world,” and is conveyed through acts of re-telling oral traditions and stories. For the Schitsu’umsh, storytelling is a living act and can only truly occur in-person...
Native Americans in the Southwest United States are thought to be particularly vulnerable to climate change. Tribal resiliency to climate change can be affected by multiple climate-related threats and by tribal communities’ close reliance on natural resources for sustenance, economic development, and maintenance of cultural traditions. A scientifically rigorous assessment of such threats to Native Americans is a pressing need across southwestern landscapes. This project examined factors affecting Native American tribes, including water rights for fish and wildlife, protection of wetlands, and enhancement and recovery of the Pyramid Lake, Nevada fishery, and protection of important fish species. This project aimed...
The following are interview transcripts from the project "Assessing Climate Change Effects on Natural and Cultural Resources of Significance to Northwest Tribes". Interviews were conducted by Sammantha Hatfield during 2014 on the impact of climate change to members of local indigenous communities in the Pacific Northwest. Transcripts were redacted to prevent release of sensitive information.
Abstract (from Taylor & Francis Online): Climate change is altering glacial lake fisheries in the United States, presenting a complex challenge for fisheries managers. Here we provide a regional perspective to guide management of heterogeneous and yet interdependent fishery resources in glacial lakes of the upper Midwest. Our main objective was to promote the adaptation of inland glacial lakes fisheries management to climate change by outlining processes that support regional plans. Using examples from the glacial lakes region, we outline an approach for regional prioritization, specify strategies for moving from regional prioritization to on-the-ground action, and provide guidance on the implementation of management...
The Eastern Shoshone and Northern Arapaho Tribes on the Wind River Indian Reservation in Wyoming are preparing for drought and other climate fluctuations with help from a broad coalition of scientists, including groups at the University of Nebraska-Lincoln. Read More: http://drought.unl.edu/NewsOutreach/NDMCNews.aspx?id=204
thumbnail
Climate change is poised to alter natural systems, the frequency of extreme weather, and human health and livelihoods. In order to effectively prepare for and respond to these challenges in the north-central region of the U.S., people must have the knowledge and tools to develop plans and adaptation strategies. The objective of this project was to build stakeholders’ capacity to respond to climate change in the north-central U.S., filling in gaps not covered by other projects in the region. During the course of this project, researchers focused on three major activities: Tribal Capacity Building: Researchers provided tribal colleges and universities with mini-grants to develop student projects to document climate-related...
The Wind River Indian Reservation (WRIR) in west-central Wyoming is home to the Eastern Shoshone and Northern Arapaho tribes, who reside near and depend on water from the streams that feed into Wind River. In recent years, however, the region has experienced frequent severe droughts, which have affected tribal livelihoods and cultural activities. Scientists with the North Central Climate Adaptation Science Center (NCCASC) at Colorado State University, the National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln, and several other university and agency partners in the region worked in close partnership with tribal water managers to assess how drought affects the reservation, which included...
thumbnail
Daily streamflow and reservoir water elevation data for modeled locations in the Red River Basin. Values reported are for 18 different GCM (Global Climate Model) / RCP (Representative Concentration Pathway) / GDM Downscaling scenarios. Climate data from each scenario was input into a Variable Infiltration Capacity (VIC) model, that output flow values. These values were then input into RiverWare, to determine the impacts on regulated flows, lake levels and water availability. RiverWare was used for this project, because of its ability to simulate water use, reservoir operations, and local/interstate regulations.
Daily streamflow and reservoir water elevation data for modeled locations in the Red River Basin. Values reported are for 18 different GCM (Global Climate Model) / RCP (Representative Concentration Pathway) / GDM Downscaling scenarios. Climate data from each scenario was input into a Variable Infiltration Capacity (VIC) model, that output flow values. These values were then input into RiverWare, to determine the impacts on regulated flows, lake levels and water availability. RiverWare was used for this project, because of its ability to simulate water use, reservoir operations, and local/interstate regulations.


map background search result map search result map Capacity Building in the North-Central U.S.: Tribal Engagement, Climate Training, and PhenoCam Deployment Sqigwts 3-D Landscape RiverWare Daily Simulated values of Streamflow from 2006-2099: Louisiana Synthesis of Climate Impacts and Adaptation on Grassland Ecosystems in the Northern Great Plains RiverWare Daily Simulated values of Streamflow from 2006-2099: Louisiana Sqigwts 3-D Landscape Capacity Building in the North-Central U.S.: Tribal Engagement, Climate Training, and PhenoCam Deployment Synthesis of Climate Impacts and Adaptation on Grassland Ecosystems in the Northern Great Plains