Skip to main content
Advanced Search

Filters: Tags: Species vulnerability (X) > Categories: Publication (X)

2 results (87ms)   

View Results as: JSON ATOM CSV
Forecasting responses of benthic community structure and function to anthropogenic climate change is an emerging scientific challenge. Characterizing benthic species by biological attributes (traits) that are responsive to temperature and streamflow conditions can support a mechanistic approach for assessing the potential ecological responses to climate change. However, nonclimatic environmental factors also structure benthic communities and may mitigate transient climatic conditions, and these must be considered in evaluating potential impacts of climate change. Here we used macroinvertebrate and environmental data for 279 reference-quality sites spanning 12 states in the western US. For each sampling location,...
Abstract (from ScienceDirect): Rarity and life history traits inform multiple dimensions of intrinsic risk to climate and environmental change and can help systematically identify at-risk species. We quantified relative geographic rarity (area of occupancy), climate niche breadth, and life history traits for 114 freshwater fishes, amphibians, and reptiles in the U.S. Pacific Northwest. Our approach leveraged presence-only, publicly available data and traits-based inference to evaluate area of occupancy, climate sensitivity (i.e., climate niche breadth), and a Rarity and Climate Sensitivity (RCS) index of all species across multiple geographic extents, grain sizes, and data types. The RCS index was relatively stable...