Skip to main content
Advanced Search

Filters: Tags: Species distribution model (X)

271 results (54ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Virginia Department of Conservation and Recreation – Natural Heritage Program (DCRDNH) and the Florida Natural Areas Inventory (FNAI) at Florida State University (collectively, Project Partners) were funded by the South Atlantic Landscape Conservation Cooperative (SALCC) in April 2015 to develop ten species distribution models (SDM) of priority at-risk and range-restricted species (Ambystoma cingulatum, Echinacea laevigata, Heterodon simus, Lindera melissifolia, Lythrum curtissii, Notophthalmus perstriatus, Phemeranthus piedmontanus, Rhus michauxii, and Schwalbea americana) for the purposes of incorporating the models and supporting information on the conservation and management needs of the species into the...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/ddi.12257/abstract): Aim Ecological niche modelling is one of the main tools that allows for the incorporation of climate change effects into conservation planning. For example, ecological niche model predictions can be used to rank species by degree of predicted future habitat loss. While many studies have considered how different modelling decisions contribute to uncertainty in niche model outputs, here we evaluate how metrics used to rank species by conservation risk respond to the choice of global climate models, greenhouse gas emission scenarios, suitable versus unsuitable threshold values, and the degree of model complexity. Location California,...
Here we present the map of potential suitable habitat for Coachella Valley milk-vetch (Astragalus lentiginosus var. coachellae). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most...
Here we present the map of potential suitable habitat for Parish’s daisy (Erigeron parishii). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat modelling...
Here we present the map of potential suitable habitat for Mountain springs bush lupine (Lupinus excubitus var. medius). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to...
Here we present the map of potential suitable habitat for Tehachapi monardella (Monardella linoides ssp. Oblonga). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of potential suitable habitat for Amargosa niterwort (Nitrophila mohavensis). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit future habitat...
Here we present the map of probable suitable habitat for Cushenberry buckwheat (Eriogonum ovalifolium var. vineum). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and...
Here we present the map of probable suitable habitat for Pale-yellow layia (Layia heterotricha). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional...


map background search result map search result map Hot, dry scenario forecast of climate suitability for interior live oak (Quercus wislizenii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for interior live oak (Quercus wislizenii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Ensemble forecast of climate suitability for California white oak (Quercus lobata) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Warm, dry scenario forecast of climate suitability for scrub oak (Quercus berberidifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Hot, dry scenario forecast of climate suitability for Jeffrey pine (Pinus jeffreyi) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Ensemble forecast of climate suitability for California juniper (Juniperus californica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, wet scenario forecast of climate suitability for incense cedar (Calocedrus decurrens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Hot, dry scenario forecast of climate suitability for California red fir (Abies magnifica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections At-risk and range restricted species models: Geographic Datasets for Lindera melissifolia (Pondberry) Hot, dry scenario forecast of climate suitability for interior live oak (Quercus wislizenii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for interior live oak (Quercus wislizenii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Ensemble forecast of climate suitability for California white oak (Quercus lobata) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Warm, dry scenario forecast of climate suitability for scrub oak (Quercus berberidifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Hot, dry scenario forecast of climate suitability for Jeffrey pine (Pinus jeffreyi) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Ensemble forecast of climate suitability for California juniper (Juniperus californica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, wet scenario forecast of climate suitability for incense cedar (Calocedrus decurrens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Hot, dry scenario forecast of climate suitability for California red fir (Abies magnifica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections At-risk and range restricted species models: Geographic Datasets for Lindera melissifolia (Pondberry)