Skip to main content
Advanced Search

Filters: Tags: Simulation and modeling (X)

2 results (7ms)   

View Results as: JSON ATOM CSV
thumbnail
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. This research was projected using three models: cgcm31, hadley, and current. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based...
Abstract (from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0102261): The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models...


    map background search result map search result map Projected future vegetation changes for the Northwest United States and Southwest Canada at a fine spatial resolution using a dynamic global vegetation model Projected future vegetation changes for the Northwest United States and Southwest Canada at a fine spatial resolution using a dynamic global vegetation model