Skip to main content
Advanced Search

Filters: Tags: Salish Sea (X) > partyWithName: U.S. Geological Survey (X)

31 results (49ms)   

View Results as: JSON ATOM CSV
thumbnail
This portion of the data release presents the raw aerial imagery collected during the unmanned aerial system (UAS) survey of the intertidal zone at West Whidbey Island, WA, on 2019-06-04. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. Flights using both a nadir camera orientation and an oblique camera orientation were conducted. For the nadir flights (F04, F05, F06, F07, and F08), the camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre-programmed autonomous flight lines at an approximate altitude of 70 meters above ground...
thumbnail
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at West Whidbey Island, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create the DSM was acquired using a UAS fitted with a Ricoh GR II...
thumbnail
This portion of the data release presents a digital surface model (DSM) and hillshade image of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The DSM has a resolution of 4 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create the DSM was acquired using a UAS fitted with a Ricoh...
thumbnail
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zone at Post Point, Bellingham Bay, WA. The orthomosaics were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. The orthomosaics are presented with two resolutions: one image, covering the entire survey area, has a resolution of 2 centimeters per pixel; the other image which was derived from a lower-altitude flight, covers an inset area within the main survey area and has a resolution of 1 centimeter per pixel. The raw imagery used to create the orthomosaics was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global...
thumbnail
This portion of the data release presents the raw aerial imagery collected during the Unmanned Aerial System (UAS) survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, on 2019-06-05. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. For flights F01, F02, F03, F04, and F05 the UAS was flown on pre-programmed autonomous flight lines at an approximate altitude of 70 meters above ground level (AGL), resulting in a nominal ground-sample-distance (GSD) of 1.8 centimeters per pixel. The flight...
thumbnail
This portion of the data release presents digital surface models (DSMs) and hillshade images of the intertidal zone at Post Point, Bellingham Bay, WA. The DSMs were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Unlike a digital elevation model (DEM), the DSMs represent the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The DSMs are presented with two resolutions: one DSM, covering the entire survey area, has a resolution of 4 centimeters per pixel;...
thumbnail
This portion of the data release presents the locations of the temporary ground control points (GCPs) used for the structure-from-motion (SfM) processing of the imagery collected during an unmanned aerial system (UAS) survey of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. Twelve temporary ground control points (GCPs) were distributed throughout each survey area to establish survey control. The GCPs consisted of a combination of small square tarps with black-and-white cross patterns and "X" marks placed on the ground using temporary chalk. The GCP positions were measured using post-processed kinematic (PPK) GPS, using corrections from a GPS base station located approximately...
thumbnail
Simulatations of water levels in the Salish Sea for a continuous hindcast of the period October 1, 1985, to September 30, 2015 were conducted to evaluate the utility and skill of a sea-level anomaly predictor and to develop extreme water level estimates accounting for decadal climate variability. The model accounts for sea level position, tides, remote sea-level anomalies, local winds and storm surge and stream flows as they affect water density. Comparison of modeled and measured water levels showed the model predicts extreme water levels at NOAA tide gage stations within 0.15 m. Model inputs and outputs of time-series water levels along the -5 m depth isobath are presented. In addition, extreme water level recurrence...
thumbnail
This portion of the data release presents topographic point clouds of the intertidal zone at Post Point, Bellingham Bay, WA. The point clouds were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-06. Two point clouds are presented with different resolutions: one point cloud (PostPoint_2019-06-06_pointcloud.zip) covers the entire survey area and has 145,653,2221 points with an average point density of 1,057 points per-square meter; the other point cloud (PostPointHighRes_2019-06-06_pointcloud.zip) has 139,427,055 points with an average point density of 3,487 points per-square meter and was derived from a lower-altitude flight covering...
thumbnail
This portion of the data release presents a high-resolution orthomosaic images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The orthomosaics have a resolution of 1.3 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. The raw imagery used to create the orthomosaics was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines at an approximate altitude of 50 meters above ground level (AGL). The flight lines were oriented roughly shore-parallel and were spaced to provide approximately...
thumbnail
This portion of the USGS data release presents eelgrass distribution and bathymetry data derived from acoustic surveys of the Nisqually River delta, Washington in 2012 (USGS Field Activity Number D-01-12-PS). Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths from the echosounder were computed using sound velocity assuming a salinity of 30 psu and temperature of 10 degrees Celcius. Positioning of the survey vessel was determined at 5 to 10 Hz using a Trimble R7 GNSS receiver...
thumbnail
This data release presents eelgrass distributions and bathymetry data derived from acoustic surveys of Bellingham Bay, Washington. Survey operations were conducted between February 16 and February 21, 2019 (USGS Field Activity Number 2019-606-FA) by a team of scientists from the U.S. Geological Survey Pacific Coastal and Marine Science Center and Washington State Department of Ecology. Eelgrass and bathymetry data were collected from the R/V George Davidson equipped with a single-beam sonar system and global navigation satellite system (GNSS) receiver. The sonar system consisted of a Biosonics DT-X single-beam echosounder and 420 kHz transducer with a 6-degree beam angle. Depths from the echosounder were computed...
thumbnail
Simulations of water levels in the Salish Sea over the period October 1, 2016 to September 30, 2020 were conducted to validate the Salish Sea hydrodynamic model. The model accounts for sea level position, tides, remote sea-level anomalies, local winds and storm surge and stream flows as they affect water density. Comparison of modeled and measured water levels showed the model predicts extreme water levels at NOAA and USGS tide gage stations within 0.15 m. Model inputs and outputs of time-series forcing and water levels, respectively, are presented.
thumbnail
This portion of the USGS data release presents eelgrass distributions derived from towed underwater video surveys of the Nisqually River delta, Washington in 2014 (USGS Field Activity Number D-01-14-PS). Eelgrass data were collected from the R/V George Davidson equipped with a towed underwater video system and global navigation satellite system (GNSS) receiver. The underwater video system consisted of a Splashcam standard definition video camera connected to a Sony GV-D1000 video monitor and tape recorder. Positioning of the survey vessel was determined at 0.5 Hz intervals using a Garmin 76c GNSS receiver. The positioning data from the GNSS were encoded onto the audio track of the digital video recording using Red...
thumbnail
This portion of the data release presents a topographic point cloud of the intertidal zone at West Whidbey Island, WA. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. The point cloud has 293,261,002 points with an average point density of 1,063 points per-square meter. The point cloud is tiled to reduce individual file sizes and is grouped within a zip file for downloading. Each point in the point cloud contains an explicit horizontal and vertical coordinate, color, intensity, and classification. Water portions of the point cloud were classified using a polygon digitized from the orthomosaic imagery derived from...
thumbnail
This portion of the data release presents a topographic point cloud of the intertidal zone at Lone Tree Point, Kiket Bay, WA. The point cloud was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-05. The point cloud has 206,323,353 points with an average point density of 929 points per-square meter. The point cloud is tiled to reduce individual file sizes and is grouped within a zip file for downloading. Each point in the point cloud contains an explicit horizontal and vertical coordinate, color, intensity, and classification. Water portions of the point cloud were classified using a polygon digitized from the orthomosaic imagery derived...
thumbnail
This portion of the data release presents a high-resolution orthomosaic image of the intertidal zone at West Whidbey Island, WA. The orthomosaic has a resolution of 2 centimeters per pixel and was derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-04. The raw imagery used to create the orthomosaic was acquired using a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 70 percent overlap between images from adjacent lines. The camera was triggered at 1 Hz using a built-in intervalometer. The UAS was flown at an approximate altitude...
thumbnail
This portion of the USGS data release presents eelgrass distributions derived from towed underwater video surveys of the Nisqually River delta, Washington in 2017 (USGS Field Activity Number 2017-614-FA). Eelgrass data were collected from the R/V George Davidson equipped with a towed underwater video system and global navigation satellite system (GNSS) receiver. The underwater video system consisted of a Splashcam standard definition video camera connected to a Sony GV-D1000 video monitor and tape recorder. Positioning of the survey vessel was determined at 1 Hz intervals using a Trimble R7 GNSS receiver and Trimble Zephyr Model 2 antenna. The positioning data from the GNSS were encoded onto the audio track of the...
thumbnail
This portion of the data release presents digital surface models (DSM) and hillshade images of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA. The DSMs have a resolution of 2.5 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unmanned aerial system (UAS) on 2019-06-03. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the bounds of a cell. Vegetation, buildings and other objects have not been removed from the data. In addition, data artifacts resulting from noise in the original imagery have not been removed. The raw imagery used to create this DSM was acquired using a...
thumbnail
This portion of the data release presents the raw aerial imagery collected during an Unmanned Aerial System (UAS) survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, on 2019-06-03. The imagery was acquired using a Department of Interior-owned 3DR Solo quadcopter fitted with a Ricoh GR II digital camera featuring a global shutter. The camera was mounted using a fixed mount on the bottom of the UAS and oriented in an approximately nadir orientation. The UAS was flown on pre-programmed autonomous flight lines at an approximate altitude of 50 meters above ground level (AGL), resulting in a nominal ground-sample-distance (GSD) of 1.3 centimeters per pixel. The flight lines were oriented roughly...


map background search result map search result map Eelgrass distributions derived from a towed underwater video survey of the Nisqually River delta, 2017 Eelgrass distributions derived from a towed underwater video survey of the Nisqually River delta, 2014 Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2012 Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Orthomosaic imagery for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Ground control point locations for UAS survey of the intertidal zones at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Aerial imagery from UAS survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Topographic point cloud for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Topographic point cloud for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Aerial imagery from UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Digital surface models (DSMs) for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Orthomosaic imagery for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Digital surface model (DSM) for the intertidal zone at West Whidbey Island, WA, 2019-06-04 Orthomosaic imagery for the intertidal zone at West Whidbey Island, WA, 2019-06-04 Topographic point cloud for the intertidal zone at West Whidbey Island, WA, 2019-06-04 Aerial imagery from UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04 Eelgrass distributions and bathymetry of Bellingham Bay, Washington, 2019 Salish Sea water level validation simulations: 2017-2020 Salish Sea water level hindcast simulations: 1985-2015 Digital surface model (DSM) for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Topographic point cloud for the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Aerial imagery from UAS survey of the intertidal zone at Lone Tree Point, Kiket Bay, WA, 2019-06-05 Topographic point cloud for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Digital surface models (DSMs) for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Aerial imagery from UAS survey of the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Orthomosaic imagery for the intertidal zone at Post Point, Bellingham Bay, WA, 2019-06-06 Digital surface models (DSM) for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Orthomosaic imagery for the intertidal zone at Puget Creek and Dickman Mill Park, Tacoma, WA, 2019-06-03 Aerial imagery from UAS survey of the intertidal zone at West Whidbey Island, WA, 2019-06-04 Digital surface model (DSM) for the intertidal zone at West Whidbey Island, WA, 2019-06-04 Orthomosaic imagery for the intertidal zone at West Whidbey Island, WA, 2019-06-04 Topographic point cloud for the intertidal zone at West Whidbey Island, WA, 2019-06-04 Eelgrass distributions and bathymetry derived from an acoustic survey of the Nisqually River delta, Washington, 2012 Eelgrass distributions and bathymetry of Bellingham Bay, Washington, 2019 Salish Sea water level validation simulations: 2017-2020 Salish Sea water level hindcast simulations: 1985-2015