Filters: Tags: STATSGO2 (X)
13 results (60ms)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types
|
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
Categories: Data;
Types: Citation;
Tags: Data,
EARTH SCIENCE > LAND SURFACE > LANDSCAPE,
LCC Network Science Catalog,
Resistance and Resilience,
Resistance and Resilience,
This tabular data set represents the percentages of soils for each STATSGO2 Hydrologic Group compiled for two spatial components of the NHDPlus version 2 data suite (NHDPlusv2) for the conterminous United States; 1) individual reach catchments and 2) reach catchments accumulated upstream through the river network. The source data is found in the component table from the "STATSGOs" soil database produced by the United States Department of Agriculture (USDA, 2010). The variables included are hydrologic groups. This dataset can be linked to the NHDPlus version 2 data suite by the unique identifier COMID. Reach catchment information characterizes data at the local scale. Reach catchments accumulated upstream through...
Types: Citation;
Tags: Catchment,
Conterminous United States,
Hydrologic Group,
Inlandwaters,
NAWQA,
Values represent percent of surrounding landscape (5K) are dominated by sagebrush cover. Reclassified LANDFIRE 2013 Existing Vegetation Type by selecting the ecological systems containing sagebrush (Codes: 2080, 2125, 2126, 2220, 2064, 2072, 2079, 2124) to create a binary raster dataset with 1 for the sagebrush land cover types and zero for all others.To incorporate sagebrush lost to fire in fires since the Landsat was flown in 2010 that Landfire was derived from, I used fire perimeters from 2011,2012, & 2013 to reclassify pixels designated as having sagebrush as 0 (not having sagebrush), which assumes a homogenous burn (in reality there may be patches of sagebrush left within a burn perimeter). I then ran focalsum...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Categories: Data;
Tags: EARTH SCIENCE > LAND SURFACE > LANDSCAPE,
LCC Network Science Catalog,
Resistance and Resilience,
SSURGO,
SSURGO,
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
Categories: Data;
Types: Citation;
Tags: Data,
EARTH SCIENCE > LAND SURFACE > LANDSCAPE,
LCC Network Science Catalog,
Resistance and Resilience,
Resistance and Resilience,
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Categories: Data;
Tags: EARTH SCIENCE > LAND SURFACE > LANDSCAPE,
LCC Network Science Catalog,
Resistance and Resilience,
SSURGO,
SSURGO,
This dataset consists of a 100 meter resolution raster of depth and area weighted averages for soil pH for each map unit key (MUKEY) in the U.S. Department of Agriculture, Natural Resources Conservation Service's (NRCS) State Soil Geographical (STATSGO2) database (NRCS, 2016). This raster was developed from selected criteria of soil parameters from the STATSGO2 database and mapped to MUKEYs.
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
This dataset consists of a 100 meter resolution raster of depth and area weighted averages for soil pH for each map unit key (MUKEY) in the State Soil Geographical (STATSGO2) database (NRCS, 2016). This raster was developed from selected criteria of soil parameters from the STATSGO2 database and mapped to a 100 meter resolution rasterized version of MUKEY polygons.
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
Categories: Data;
Types: Citation;
Tags: Data,
EARTH SCIENCE > LAND SURFACE > LANDSCAPE,
LCC Network Science Catalog,
Resistance and Resilience,
Resistance and Resilience,
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
|
![]() |