Skip to main content
Advanced Search

Filters: Tags: SLR modeling (X)

12 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...


    map background search result map search result map SLR Projections, Humboldt, Calif., 2010-2060 SLR Projections, Humboldt, Calif., 2070-2110 SLR Projections, Bolinas, Calif., 2010-2060 SLR Projections, Bolinas, Calif., 2070-2110 SLR Projections, Morro Bay, Calif., 2010-2060 SLR Projections, Morro Bay, Calif., 2070-2110 SLR Projections, Pt. Mugu, Calif., 2010-2060 SLR Projections, Pt. Mugu, Calif., 2070-2110 SLR Projections, Newport, Calif., 2010-2060 SLR Projections, Newport, Calif., 2070-2110 SLR Projections, Tijuana, Calif., 2010-2060 SLR Projections, Tijuana, Calif., 2070-2110 SLR Projections, Pt. Mugu, Calif., 2010-2060 SLR Projections, Pt. Mugu, Calif., 2070-2110 SLR Projections, Bolinas, Calif., 2010-2060 SLR Projections, Bolinas, Calif., 2070-2110 SLR Projections, Morro Bay, Calif., 2010-2060 SLR Projections, Morro Bay, Calif., 2070-2110