Skip to main content
Advanced Search

Filters: Tags: Riparian vegetation (X)

45 results (63ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Beavers (Castor canadensis Kuhl) can influence the competitive dynamics of plant species through selective foraging, collection of materials for dam creation, and alteration of hydrologic conditions. In the Grand Canyon National Park, the native Salix gooddingii C.R.Ball (Goodding?s willow) and Salix exigua Nutt. (coyote willow) are a staple food of beavers. Because Salix competes with the invasive Tamarix ramosissima Ledeb., land mangers are concerned that beavers may cause an increase in Tamarix through selective foraging of Salix. A spatial analysis was conducted to assess whether the presence of beavers correlates with the relative abundance of Salix and Tamarix. These methods were designed to detect a system-wide...
thumbnail
As part of a study to investigate the causes of channel narrowing and incision in Canyon de Chelly National Monument, the effects of Tamarisk and Russian-olive on streambank stability were investigated. In this study, root tensile strengths and distributions in streambanks were measured and used in combination with a root-reinforcement model, RipRoot, to estimate the additional cohesion provided to layers of each streambank. The additional cohesion provided by the roots in each 0.1-m layer ranged from 0 to 6.9 kPa for Tamarisk and from 0 to 14.2 kPa for Russian-olive. Average root-reinforcement values over the entire bank profile were 2.5 and 3.2 kPa for Tamarisk and Russian-olive, respectively. The implications...
thumbnail
The 1935 images were obtained as digitally scanned versions of aerial photographs acquired by the U.S. Department of Agriculture at a scale of 1:31,680. The actual date of image acquisition is not known. The images were previously scanned at 600 dpi to produce a nominal pixel size of 1.28 m (Friedman et al., 2015). The images were registered and rectified using identifiable common points from the 1996 DOQQs. See description of positional accuracy below. Data derived from features mapped from the 1935 images were presented in: Friedman, J.M., Vincent, K.R., Griffin, E.R., Scott, M.L., Shafroth, P.B., and Auble, G.T., 2015, Processes of arroyo filling in northern New Mexico, USA, GSA Bulletin, 127(3/4), 621-640....
thumbnail
These data were collected as part of a methodologial comparison for collecting riparian vegetation data. Two common methods for collecting vegetation data were used: line-point intercept and 1m2 ocular quadrats (visual cover estimates). At each site and transect, both methods were used to collect cover and composition data by four different observers. The same transects and quadrats were utilized for both methods and all observers. Field data collected included percent cover for total living foliar cover, each plant species encountered, litter, dead plant material that is still standing, and ground cover features (biological soil crust, rock, sand, and fine soil particles). Line-point intercept data were collected...
thumbnail
These data consist of species relative cover, percent cover of dead plant material, percent cover of soil and rock, and a variety of broad - and local- scale environmental variables. These data relate to sample sites along the Colorado River through Grand Canyon between Lees Ferry and river mile 245. The plant and ground cover data included here were originally collected as a part of annual vegetation monitoring by Grand Canyon Monitoring and Research Center. Environmental variables were either recorded in the field or obtained through other data sources. Species and ground cover data were collected in August and September 2014 at 96 randomly selected sample sites that were approximately evenly distributed along...
thumbnail
These data were compiled for evaluating plant water use, or river-reach level evapotranspiration (ET) data, in the riparian corridor of the Colorado River delta as specified under Minute 319 of the 1944 Water Treaty. Additionally, these data were compiled for evaluating restoration-level data in Reach 2 and Reach 4, as specified under Minute 323 of the 1944 Water Treaty. Objectives of our study were to measure the peak growing season evapotranspiration (ET) for the average of months in summer-fall (May to October) for the seven reaches, for the full riparian corridor, and for four restoration sites, from 2013 through 2022. The seven reach areas from the Northerly International Boundary (NIB) to the end of the delta...
Tags: 1944 Water Treaty, Arizona, Botany, Colorado River, Colorado River delta, All tags...
thumbnail
These data are aerial image-derived, classification maps of tamarisk (Tamarisk spp.) in the riparian zone of the Colorado River from Glen Canyon Dam to Separation Canyon, a total river distance of 412 km. The classification maps are published in GIS vector format. Two maps are published: 1) a classification of tamarisk from a 0.2 m resolution multispectral image dataset acquired in May 2009 (Tamarisk Classification 2009), and 2) a classification of tamarisk impacted by the tamarisk beetle (Diorhabda carinulata) from a 0.2 m resolution multispectral image dataset acquired in May 2013 (Beetle Impact Classification 2013). Tamarisk presence in 2009 was classified using the Mahalanobis Distance method with a total of...
thumbnail
This data release includes hourly water temperature data at 12 locations in the main stem of the Quinault River and its major tributaries, and data from a riparian vegetation survey conducted in the lower Quinault River, Washington. Water temperature data was collected during the summer of 2018 and 2019 at most locations. Variable collection periods by site are described within the dataset. Riparian vegetation surveys were conducted during the summer of 2018.
thumbnail
These data were compiled for monitoring riparian vegetation change along the Colorado River. This file contains data recorded at 42 sandbars between Lees Ferry and Diamond Creek, AZ, which are sampled for both geomorphic and vegetation change annually. Field data contained here were collected from 2012 to 2016 in September and October of each year. Plant species cover values in 5441 1m^2 quadrat frames, locations and elevations of those sampling frames, slope and aspect, sample dates, temperature and precipitation data, and flood frequency parameters were either recorded in the field or calculated. Annual and seasonal climate variables were estimated from eight weather stations distributed along the river corridor...
Tags: Arizona, Botany, Climatology, Colorado River, Diamond Creek, All tags...
thumbnail
These data were compiled to perform analyses of hydrologic change, changes in sediment transport, and channel change within Moenkopi Wash, Arizona. Objective(s) of our study were to quantify the magnitude and timing of changes in hydrology, sediment transport, and channel form within Moenkopi Wash and to determine the downstream effects of those changes on sediment delivery downstream to the Little Colorado River, and the Colorado River. These data represent instantaneous discharge records, suspended-sediment sample records, topographic survey data, historical aerial imagery, and channel polygons and centerlines mapped on the historical imagery. Instantaneous discharge records in this study began in 1926 and extend...
Categories: Data; Tags: Arizona, Cameron, Colorado River, Little Colorado River, Moenkopi, All tags...
Biological invasions are a threat to ecosystems across all biogeographical realms. Riparian habitats are considered to be particularly prone to invasion by alien plant species and, because riparian vegetation plays a key role in both aquatic and terrestrial ecosystems, research in this field has increased. Most studies have focused on the biology and autecology of invasive species and biogeographical aspects of their spread. However, given that hydrogeomorphological processes greatly influence the structure of riparian plant communities, and that these communities in turn affect hydrology and fluvial geomorphology, scant attention has been paid to the interactions between invasions and these physical processes....
As global climate change affects recharge and runoff processes, stream flow regimes are being altered. In the American Southwest, increasing aridity is predicted to cause declines in stream base flows and water tables. Another potential outcome of climate change is increased flood intensity. Changes in these stream flow conditions may independently affect vegetation or may have synergistic effects. Our goal was to extrapolate vegetation response to climate-linked stream flow changes, by taking advantage of the spatial variation in flow conditions over a 200 km length of the San Pedro River (Arizona). Riparian vegetation traits were contrasted between sites differing in low-flow hydrology (degree of stream intermittency)...
thumbnail
The 1970s images were obtained as digital scans on CDs, with no metadata. Source information for the original aerial photographs is not available. Original photo scale was about 1:40,000 for the 1975 images (filenames beginning "r75")and 1:12,000 for the 1979 images (filenames beginning "rfl"). I registered and rectified these images using identifiable common points from 1996 DOQQs. See the description of positional accuracy below. Data derived from features mapped from the 1970s images were presented in: Friedman, J.M., Vincent, K.R., Griffin, E.R., Scott, M.L., Shafroth, P.B., and Auble, G.T., 2015, Processes of arroyo filling in northern New Mexico, USA, GSA Bulletin, 127(3/4), 621-640. doi: 10.1130/B31046.1
thumbnail
These data were compiled to perform analyses of hydrologic change, changes in sediment transport, and channel change within Moenkopi Wash, Arizona. Objective(s) of our study were to quantify the magnitude and timing of changes in hydrology, sediment transport, and channel form within Moenkopi Wash and to determine the downstream effects of those changes on sediment delivery downstream to the Little Colorado River, and the Colorado River. These data represent instantaneous discharge records, suspended-sediment sample records, topographic survey data, historical aerial imagery, and channel polygons and centerlines mapped on the historical imagery. Instantaneous discharge records in this study began in 1926 and extend...
Tags: Arizona, Cameron, Colorado River, Geography, Hydrology, All tags...
1. Riparian vegetation in dry regions is influenced by low-flow and high-flow components of the surface and groundwater flow regimes. The duration of no-flow periods in the surface stream controls vegetation structure along the low-flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape...
thumbnail
Riparian ecosystems are important components of landscapes, particularly because of their role in biodiversity. A first step in using a ""coarse-filter"" approach to riparian biodiversity conservation is to determine the kinds of riparian ecosystems. These ecosystems vary substantially in plant species composition along a single river reach, as well as between rivers, and yet the river-reach scale has received little attention. We sampled the vascular plant composition of 67 contiguous patches of riparian vegetation along the reach of the Animas River, in southwestern Colorado's San Juan Mountains, that is relatively undisturbed by human land uses. Using cluster analysis and detrended correspondence analysis, we...
thumbnail
The intense demand for river water in arid regions is resulting in widespread changes in riparian vegetation. We present a direct gradient method to predict the vegetation change resulting from a proposed upstream dam or diversion. Our method begins with the definition of vegetative cover types, based on a census of the existing vegetation in a set of 1 x 2 m plots. A hydraulic model determines the discharge necessary to inundate each plot. We use the hydrologic record, as defined by a flow duration curve, to determine the inundation duration for each plot. This allows us to position cover types along a gradient of inundation duration. A change in river management results in a new flow duration curve, which is used...
The southwestern willow flycatcher (SWFL; Empidonax traillii extimus) is an endangered songbird whose habitat has declined dramatically over the last century. Understanding habitat selection patterns and the ability to identify potential breeding areas for the SWFL is crucial to the management and conservation of this species. We developed a multiscaled model of SWFL breeding habitat with a Geographic Information System (GIS), survey data, GIS variables, and multiple logistic regressions. We obtained presence and absence survey data from a riverine ecosystem and a reservoir delta in south-central Arizona, USA, in 1999. We extracted the GIS variables from satellite imagery and digital elevation models to characterize...
Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical...


map background search result map search result map Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona Relating Riparian Vegetation to Present and Future Streamflows Classification of the riparian vegetation along a 6-km reach of the Animas River, southwestern Colorado Lower Rio Puerco 1935 georeferenced aerial photographs Lower Rio Puerco 1970s georeferenced aerial photographs Riparian Vegetation and Environmental Variables, Colorado River, 2014—Data Remote sensing derived maps of tamarisk (2009) and beetle impacts (2013) along 412 km of the Colorado River in the Grand Canyon, Arizona Climate, hydrology and riparian vegetation composition data, Grand Canyon, Arizona Riparian vegetation data used for comparing sampling methods along the Colorado River, Grand Canyon, Arizona Water temperature and riparian vegetation survey data for the lower Quinault River, WA for select periods in 2018 and 2019 Discharge, topographic, suspended-sediment, and GIS data from Moenkopi Wash, AZ Remotely-sensed observations of restoration sites of the riparian corridor of the Colorado River Delta in Mexico, 2013-2022 Topographic survey data from Moenkopi Wash, AZ Classification of the riparian vegetation along a 6-km reach of the Animas River, southwestern Colorado Riparian vegetation data used for comparing sampling methods along the Colorado River, Grand Canyon, Arizona Relating Riparian Vegetation to Present and Future Streamflows Water temperature and riparian vegetation survey data for the lower Quinault River, WA for select periods in 2018 and 2019 Lower Rio Puerco 1970s georeferenced aerial photographs Lower Rio Puerco 1935 georeferenced aerial photographs Destabilization of streambanks by removal of invasive species in Canyon de Chelly National Monument, Arizona Remotely-sensed observations of restoration sites of the riparian corridor of the Colorado River Delta in Mexico, 2013-2022 Discharge, topographic, suspended-sediment, and GIS data from Moenkopi Wash, AZ Topographic survey data from Moenkopi Wash, AZ Riparian Vegetation and Environmental Variables, Colorado River, 2014—Data Remote sensing derived maps of tamarisk (2009) and beetle impacts (2013) along 412 km of the Colorado River in the Grand Canyon, Arizona Climate, hydrology and riparian vegetation composition data, Grand Canyon, Arizona