Skip to main content
Advanced Search

Filters: Tags: Parker River (X) > partyWithName: Natural Hazards (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

21 results (38ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo uncrewed aircraft systems (UAS) on November 14, 2017 and March 28, 2019. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GR II digital camera for true color photos, which can be used to produce digital elevation models and ortho images, or a MicaSense RedEdge multispectral camera for five-banded imagery (blue, green, red, red edge, and near-infrared spectral bands), which can be used to...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo unmanned aircraft systems (UAS) on February 27, 2018. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be used to classify...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo unmanned aircraft systems (UAS) on November 14, 2017 and March 28, 2019. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo unmanned aircraft systems (UAS) on February 27, 2018. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be used to classify...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo unmanned aircraft systems (UAS) on February 27, 2018. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be used to classify...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge in Massachusetts using 3DR Solo unmanned aerial systems (UAS) on February 27, 2018. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be used to classify vegetation....
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo unmanned aircraft systems (UAS) on November 14, 2017 and March 28, 2019. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GRII digital camera for natural color photos, used to produce digital elevation models and ortho images, or a MicaSense RedEdge multi-spectral camera that captures five specific bands of the visible spectrum (blue, green, red, red edge, and near-infrared), which can be...
thumbnail
Atlantic coast piping plover (Charadrius melodus) nest sites are typically found on low-lying beach and dune systems, which respond rapidly to coastal processes like sediment overwash, inlet formation, and island migration that are sensitive to climate-related changes in storminess and the rate of sea-level rise. Data were obtained to understand piping plover habitat distribution and use along their Atlantic Coast breeding range. A smartphone application called iPlover was developed to collect standardized data on habitat characteristics at piping plover nest locations. The application capitalized on a network of trained monitors that observe piping plovers throughout their U.S. Atlantic coast breeding range as...
Categories: Data; Tags: Assateague Island, Atlantic Margin, CMGP, Cape Cod, Cape Lookout, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) The salt marsh complex of Plum Island Estuary and Parker River (PIEPR) was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location was used to determine the ridge lines that separate each marsh unit while the surface slope was used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) Unvegetated to vegetated marsh ratio (UVVR) in the Plum Island Estuary and Parker River (PIEPR) salt marsh complex was computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands,...
thumbnail
Note: The 2021 data release "Geospatial characterization of salt marshes for Massachusetts" is a more recent and comprehensive MA salt marsh dataset. (https://doi.org/10.5066/P97E086F) This data release provides elevation distribution in the Plum Island Estuary and Parker River (PIEPR) salt marsh complex. Elevation distribution was calculated in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data was based on the 1-meter gridded Digital Elevation Model and supplemented by 1-meter resampled 1/9 arc-second resolution National Elevation Data, where data gaps exist. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey...
thumbnail
Low-altitude (80 and 100 meters above ground level) digital images were taken over an area of the Plum Island Estuary and Parker River National Wildlife Refuge (NWR) in Massachusetts using 3DR Solo uncrewed aircraft systems (UAS) on November 14, 2017 and March 28, 2019. These images were collected as part of an effort to document marsh stability over time and quantify sediment movement using UAS technology. Each UAS was equipped with either a Ricoh GR II digital camera for true color photos, which can be used to produce digital elevation models and ortho images, or a MicaSense RedEdge multispectral camera for five-banded imagery (blue, green, red, red edge, and near-infrared spectral bands), which can be used to...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Ann, All tags...


map background search result map search result map Table and accompanying photographs for biogeomorphic classification of shorebird nesting sites on the U.S. Atlantic coast from March to September, 2016 Conceptual marsh units for Plum Island Estuary and Parker River salt marsh complex, Massachusetts Unvegetated to vegetated marsh ratio in Plum Island Estuary and Parker River salt marsh complex, Massachusetts Elevation of marsh units in Plum Island Estuary and Parker River salt marsh complex, Massachusetts Aerial imagery from unmanned aerial systems (UAS) flights and ground control points: Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018. Multispectral aerial imagery from unmanned aerial systems (UAS) flights and image locations: Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018 True color aerial imagery from unmanned aerial systems (UAS) flights and image locations: Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018 Ground control and transect points collected during unmanned aerial systems (UAS) flights: Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Parker River, MA, 2014 Development: Development delineation: Parker River, MA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parker River, MA, 2014 DisOcean: Distance to the ocean: Parker River, MA, 2014 ElevMHW: Elevation adjusted to local mean high water: Parker River, MA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parker River, MA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parker River, MA, 2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Parker River, MA, 2014 Aerial imagery and ground control points collected during an uncrewed aerial systems (UAS) survey at Plum Island Estuary and Parker River NWR (PIEPR), November 14, 2017 and March 28, 2019 Ground control and transect points collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), November 14, 2017 and March 28, 2019 Multispectral aerial imagery collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), Massachusetts, November 14, 2017 and March 28, 2019 True color aerial imagery collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), Massachusetts, November 14, 2017 and March 28, 2019 Multispectral aerial imagery from unmanned aerial systems (UAS) flights and image locations: Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018 Multispectral aerial imagery collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), Massachusetts, November 14, 2017 and March 28, 2019 Ground control and transect points collected during unmanned aerial systems (UAS) flights: Plum Island Estuary and Parker River NWR (PIEPR), February 27th, 2018 Aerial imagery and ground control points collected during an uncrewed aerial systems (UAS) survey at Plum Island Estuary and Parker River NWR (PIEPR), November 14, 2017 and March 28, 2019 Ground control and transect points collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), November 14, 2017 and March 28, 2019 True color aerial imagery collected during uncrewed aircraft systems (UAS) operations: Plum Island Estuary and Parker River NWR (PIEPR), Massachusetts, November 14, 2017 and March 28, 2019 Development: Development delineation: Parker River, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Parker River, MA, 2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Parker River, MA, 2014 DisMOSH, Cost, MOSH_Shoreline: Distance to foraging areas for piping plovers including foraging shoreline, cost mask, and least-cost path distance: Parker River, MA, 2014 DisOcean: Distance to the ocean: Parker River, MA, 2014 ElevMHW: Elevation adjusted to local mean high water: Parker River, MA, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Parker River, MA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Parker River, MA, 2014 Unvegetated to vegetated marsh ratio in Plum Island Estuary and Parker River salt marsh complex, Massachusetts Elevation of marsh units in Plum Island Estuary and Parker River salt marsh complex, Massachusetts Conceptual marsh units for Plum Island Estuary and Parker River salt marsh complex, Massachusetts Table and accompanying photographs for biogeomorphic classification of shorebird nesting sites on the U.S. Atlantic coast from March to September, 2016