Skip to main content
Advanced Search

Filters: Tags: Other Wildlife (X)

233 results (18ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/fwb.12290/abstract): Freshwater mussels (Unionidae) are a highly imperilled faunal group. One critical threat is thermal sensitivity, because global climate change and other anthropogenic activities contribute to increasing stream temperature and altered hydrologic flow that may be detrimental to freshwater mussels. We incorporated four benthic environmental components – temperature, sediment, water level (a surrogate for flow) and a vertical thermal gradient in the sediment column – in laboratory mesocosm experiments with juveniles of two species of freshwater mussels (Lampsilis abrupta and Lampsilis radiata) and tested their effects on survival, burrowing...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173844): Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These...
Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding...
Abstract (from http://www.esajournals.org/doi/abs/10.1890/11-2296.1): Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site,...
Abstract (from ESA): Estimating population size and resource selection functions (RSFs) are common approaches in applied ecology for addressing wildlife conservation and management objectives. Traditionally such approaches have been undertaken separately with different sources of data. Spatial capture–recapture (SCR) provides a hierarchical framework for jointly estimating density and multi‐scale resource selection, and data integration techniques provide opportunities for improving inferences from SCR models. Despite the added benefits, there have been few applications of SCR‐RSF integration, potentially due to complexities of specifying and fitting such models. Here, we extend a previous integrated SCR‐RSF model...
In 1969, researchers developed the first global circulation model (Ruttiman 2006); however, it was not until 2014 that modelers first attempted a global ecosystem and biodiversity model that included human pressures (i.e., the Madingley Model) (Harfoot et al. 2014). Other large-scale models of biodiversity exist, such as GLOBIO (Alkemade et al. 2009), but to date there are no well accepted global biodiversity models similar to global circulation models that can help guide global biodiversity policy development and targets. The lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity for climate, ecosystem, and biodiversity modeling experts to...
thumbnail
The objective of this project is to map the supply of ecosystem services (where natural ecosystems have the capacity to provide a certain product or service that could be of use to people), use of those services (where people or other entities that use the product or service exist), and the condition of ecosystems providing these services over time. The resulting datasets were used to generate metrics for pilot ecosystem accounts for the southeast – part of natural capital accounts that assess ecosystems’ contributions to the economy in order to help governments better understand their reliance on natural systems and manage natural resources to ensure their benefits are sustained into the future. These data were...
thumbnail
Pollinator restoration requires information about what species to plant and when to plant them to ensure food sources are available throughout the periods when pollinators are active. Changes in climate, including earlier spring warming and warmer fall temperatures, may cause flowering to become out of sync with pollinator activity. When restoring land to support pollinators, managers are challenged to select a mix of species that support pollinators of concern throughout their periods of activity. Existing planting tools have several disadvantages such as, their usability is location specific, they are virtually non-existent for the South Central region, and they do not often account for future changes in plant...
Climate change is affecting species and ecosystems across the Northeast and Midwest U.S. Natural resource managers looking to maintain ecological function and species persistence have requested information to improve resource management in the face of climate change. Leveraging the research that has already been supported by the Northeast Climate Adaptation Science Center and its partners, this project used the latest modeling techniques combined with robust field data to examine the impact of specific climate variables, land use change, and species interactions on the future distribution and abundance of species of conservation concern. An interdisciplinary team worked to understand the mechanisms that are driving...
thumbnail
Estimates of the probability of mortality in whitebark pine from mountain pine beetles as determined from a logistic generalized additive model of the presence of mortality as functions of the number of trees killed last year, the percent whitebark pine in each cell, minimum winter temperature, average fall temperature, average April - Aug temperature, and cummulative current and previous year summer precipitation. Analysis was done at a 1 km grid cell resolution. Data are a list of points in comma separated text format. Point coordinates are the center of each 1 km grid cell.
thumbnail
Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process. Co-production, a process whereby scientists work closely with managers to identify and fill knowledge gaps, is an effective means of ensuring that science results will be directly useful to managers. Through a multi-phase project, researchers are implementing co-production...
thumbnail
Forests are of tremendous ecological and economic importance. They provide natural places for recreation, clean drinking water, and important habitats for fish and wildlife. However, the warmer temperatures and harsher droughts in the west that are related to climate change are causing die-offs of many trees. Outbreaks of insects, like the mountain pine beetle, that kill trees are also more likely in warmer, drier conditions. To maintain healthy and functioning forest ecosystems, one action forest managers can take is to make management decisions that will help forests adapt to future climate change. However, adaptation is a process based on genetic change and few tools are currently available for managers to use...
Although scientists have identified many ways to reduce the negative effects of climate change on wildlife, this information is not readily available to natural resource managers. For successful wildlife adaptation to climate change, natural resource managers should have current, peerreviewed information to guide their decisions. We conducted a review of over 1300 publications for recommendations to manage wildlife in the face of climate change. We then summarized the findings as the wildlife adaptation menu, a tool to inform planning and decision-making in an accessible format.
Effective climate change adaptation for northeast fish and wildlife can be guided and focused by State Wildlife Action Plans (SWAPs), last updated in 2015. Plans include conservation targets (species and habitats), threats, and actions, including climate change vulnerability analyses and conservation measures to respond to climate change related stressors. Across the northeast states’ SWAPs, priority threat themes emerge - pollution, disease, invasive species, development, and climate change.
Climate change is already affecting species in many ways. Because individual species respond to climate change differently, some will be adversely affected by climate change whereas others may benefit. Successfully managing species in a changing climate will require an understanding of which species will be most and least impacted by climate change. Although several approaches have been proposed for assessing the vulnerability of species to climate change, it is unclear whether these approaches are likely to produce similar results. In this study, we compared the relative vulnerabilities to climate change of 76 species of birds, mammals, amphibians, and trees based on three different approaches to assessing vulnerability....
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...
thumbnail
Climate change is expected to worsen the harmful effects of invasive species on native wildlife. This presents a growing conservation challenge for invasive species managers in the southeastern United States where thousands of invasive species exist. While many of these invasive species currently have relatively small ranges in the southeastern U.S., climate change may allow them to expand into new regions. To effectively plan and respond to the redistribution of invasive species, it is crucial to coordinate existing information and identify future information needs across regional boundaries. The ultimate goal of this project is to improve invasive species management in the face of climate change by establishing...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/jawr.12179/abstract): Freshwater mussels (order Unionida) are a highly imperiled group of organisms that are at risk from rising stream temperatures ( T ). There is a need to understand the potential effects of land use (LU) and climate change (CC) on stream T and have a measure of uncertainty. We used available downscaled climate projections and LU change simulations to simulate the potential effects on average daily stream T from 2020 to 2060. Monte Carlo simulations were run, and a novel technique to analyze results was used to assess changes in hydrologic and stream T response. Simulations of daily mean T were used as input to our stochastic...


map background search result map search result map Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability Probability of Whitebark Pine Mortality from Mountain Pine Beetle, 1997-2009, Northern Rockies Study Area Using Genetic Information to Understand Drought Tolerance and Bark Beetle Resistance in Whitebark Pine Forests Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Mapping Ecosystem Services for Natural Capital Accounting Southeast Regional Invasive Species and Climate Change Management Network (SE RISCC) Probability of Whitebark Pine Mortality from Mountain Pine Beetle, 1997-2009, Northern Rockies Study Area Time to Restore: Using a Community Based Approach to Identify Key Plant Species for Pollinator Restoration Southeast Regional Invasive Species and Climate Change Management Network (SE RISCC) Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Mapping Ecosystem Services for Natural Capital Accounting Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability