Skip to main content
Advanced Search

Filters: Tags: Other Water (X) > Extensions: Budget (X)

14 results (321ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Haleakalā National Park (HNP) and the surrounding landscape spans many different land cover types, some of which are undergoing vegetation changes that can reduce the amount of water that infiltrates into soil. Decreased soil infiltration can lead to the erosion of terrestrial habitats, increases in the amount of sediment entering aquatic habitats, and flooding of downstream areas as runoff increases after storms. Currently, HNP managers are attempting to control runoff and erosion to avoid loss and damage within park boundaries and parks located downstream. Managers in HNP have expressed a need for information on current and future runoff and erosion risk to help prioritize management within the park and other...
thumbnail
Water is a key ecosystem service that provides life to vegetation, animals, and human communities. The distribution and flow of water on a landscape influences many ecological functions, such as the distribution and health of vegetation and soil development and function. However, the future of many important water resources remains uncertain. Reduced snowfall and snowpack, earlier spring runoff, increased winter streamflow and flooding, and decreased summer streamflow have all been identified as potential impacts to water resources due to climate change. These factors all influence the water balance in the Pacific Coastal Temperate Rainforest (PCTR). Ensuring healthy flow and availability of water resources is...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
Climate change is projected to cause earlier and less snowmelt, potentially reducing water availability for terrestrial and aquatic ecosystems and for municipal and agricultural water supplies. However, if forested landscapes can be managed to retain snow longer, some of these environmental and financial impacts may be mitigated. Results from our research team demonstrate that in the Pacific Northwest (PNW), opening dense forest canopies through creating forest gaps will generally lead to more snow accumulation and later melt (i.e., up to 13 weeks later). However, under certain conditions, such as locations on ridges with high wind speeds and sunny south-facing slopes, the snow that accumulated in the forest is...
thumbnail
Resource managers must balance the impacts of competing management decisions on multiple, interacting natural systems. Hydrologic and ecological processes, such as groundwater fluctuations and riparian evapotranspiration, can be tightly coupled. Ideally, managers would have tools and models that include all processes to better understand how each management action would propagate through the environment. Because resources are limited, management tools that include only the most important processes may be more realistic. However, in some cases, omitting some interactions can lead to significant errors in predictions of hydrologic outcomes and ecological function, severely limiting a manager’s ability to identify...
thumbnail
In Arctic and sub-Arctic regions, snow plays a crucial role in atmospheric and hydrologic systems and has a major influence on the health and function of regional ecosystems. Warming temperatures may have a significant impact on snow and may therefore affect the entire water cycle of the region. A decrease in precipitation in the form of snow, or “snow drought”, can manifest in several ways including changes to total snowfall amounts, snow accumulation, and the timing/length of the snow season. Understanding these changes is then critical for understanding and predicting a variety of climate impacts to wildlife and ecosystems. However, little research has been conducted to date to understand how this change may...
thumbnail
Snow conditions are changing dramatically in the mountains of the interior Pacific Northwest, including eastern Washington, northern Idaho, and western Montana. These changes can both benefit and hinder a variety of wildlife species. The timing and extent of seasonal snowpacks, in addition to snow depth, density, and hardness, can impact the ability of wildlife to access forage, their ability to move across the landscape, and their vulnerability to predators, to name a few. In order to respond effectively to changes in snow conditions, wildlife managers need tools to identify areas and promote conditions that maintain late spring and early summer snowpack for some sensitive species. Managers also require an index...
thumbnail
The goal of this project was to: (a) archive the relevant AR5 model output data for the southwest region; (b) downscale daily temperature and precipitation to 12 X 12 km cell spatial resolution over the Southwest; (c) assess the precision (degree of agreement) of the simulated models; (d) assess the direction and magnitude of change in projections between AR4 and AR5, as well as assess projections of key extreme climatic events (i.e., extreme drought, extreme seasonal precipitation, extreme high and low temperature events); and (e) assess critical ecosystem impacts (i.e., climate water deficit and fire; hydrological condition of major river systems; impacts on highly valued species).
thumbnail
Winter snowpack provides critical water resources for human populations and ecosystems throughout western North America. Increasing temperature and changing precipitation patterns are expected to alter the extent, amount, and persistence of snow in this region. Observations of snowpack and related hydroclimate variables are limited and sparse. This project will capitalize on recent advances in water balance and snow modeling as well as the development of comprehensive North American tree-ring datasets to produce spatially specific, annually resolved, and management relevant reconstructions of snow, streamflow, and warm season temperature. The project researchers will focus specifically on spatiotemporal reconstructions...
thumbnail
Recent extreme floods on the Mississippi and Missouri Rivers have motivated decision-makers and resource managers to expaned floodplain conservation lands. Within Missouri, there are more than 85,000 acres of public conservation lands in large-river floodplains. Floodplain lands are highly dynamic and challenging to manage, particularly climatic conditions change. These lands have the potential to provide valuable ecosystem services, like wildlife habitat, nutrient processing, carbon sequestration, and flood-water storage, that produce economic values in terms of recreational spending, improved water quality, and decreased flood hazards. However, floodplain managers may need tools to help them understand changing...
thumbnail
Clouds often come in contact with vegetation (often named fogs) within a certain elevation range on Hawaiʻi’s mountains. Propelled by strong winds, cloud droplets are driven onto the stems and leaves of plants where they are deposited. Some of the water that accumulates on the plants in this way drips to the ground, adding additional water over and above the water supplied by rainfall. Prior observations show that the amount of cloud water intercepted by vegetation is substantial, but also quite variable from place to place. It is, therefore, important to create a map for the complex spatial patterns of cloud water interception (CWI) in Hawaiʻi. In this project, we proposed to create the CWI map at 0.8-km resolution...
thumbnail
On Hawai‘i’s mountains, cloud droplets, propelled by strong winds, are deposited on plants, where they accumulate and drip to the ground, adding water over and above that supplied by rainfall. Prior studies show that the amount of intercepted cloud water is substantial, and variable from place to place. Estimates of the spatial patterns of cloud water interception (CWI), the fog-related effects on plants, and the contributions of fog to groundwater recharge and surface water flows are needed to better understand the water cycle and predict effects of climate change on water supply and ecosystems. We will make measurements of fog, wind, fog interception, soil moisture, and fog effects on plant water use and plant...
thumbnail
As the predicted impacts of climate change are becoming more apparent, natural resource managers are faced with the task of developing climate adaptation plans. These managers need state-of-the-art, scientifically based information upon which to base these management plans and decisions consistently across California and the Great Basin. This project applies historical, current, and projected climate data to a regional water model to examine water availability, biodiversity, and conservation. Analysis of this climate and hydrology data is expected to help managers understand areas in the region and landscape where the effects of climate change are expected to be the most profound. The study also addresses how the...
thumbnail
The City and Borough of Juneau, Alaska has the highest urban avalanche danger in the U.S., with regular impacts to people, property, critical infrastructure, and natural resources. Avalanche hazard zones occur over a large area extending from downtown Juneau to the Snettisham power plant 50 km to the south, the Kensington Mine 60 km to the north, and the Eaglecrest Ski area 6 km to the west. Developing a better understanding of avalanches and the processes leading to avalanche formation in the Juneau area is critical. This information would greatly aid local and regional efforts to forecast avalanches and update avalanche hazard maps, including the risk to transportation, utility, and mining corridors. An important...


    map background search result map search result map Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin Assessment of Available Climate Models and Projections for the Southwest Region Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Science to Inform Management of Floodplain Conservation Lands in a Changing World Forest Management Tools to Maximize Snow Retention under Climate Change Assessing the Impacts of Restoration Efforts on Water and Natural Systems in a Changing World Cloud Water Interception in Hawai‘i - Part 1: Understanding the Impact of Fog on Groundwater and Ecosystems and Future Changes to these Processes Cloud Water Interception in Hawaiʻi - Part 2: Mapping Current and Future Exchange of Water Between Clouds and Vegetation in Hawaiʻi's Mountains Snow Drought: Recognizing and Understanding its Impacts in Alaska Learning From Recent Snow Droughts To Improve Forecasting of Water Availability for People and Forests From Public Hazard to Key Drivers of Landscape Change: Understanding the Role of Avalanches in Southeast Alaska Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Water Resource Relevant Hydroclimatic Reconstructions for Western North America The Impacts of Changing Snow Conditions and Winter Severity on Wildlife in the Interior Pacific Northwest Assessing the Impacts of Restoration Efforts on Water and Natural Systems in a Changing World From Public Hazard to Key Drivers of Landscape Change: Understanding the Role of Avalanches in Southeast Alaska Cloud Water Interception in Hawai‘i - Part 1: Understanding the Impact of Fog on Groundwater and Ecosystems and Future Changes to these Processes Cloud Water Interception in Hawaiʻi - Part 2: Mapping Current and Future Exchange of Water Between Clouds and Vegetation in Hawaiʻi's Mountains Science to Inform Management of Floodplain Conservation Lands in a Changing World Forest Management Tools to Maximize Snow Retention under Climate Change The Impacts of Changing Snow Conditions and Winter Severity on Wildlife in the Interior Pacific Northwest Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Using Climate and Water Models to Examine Future Water Availability and Biodiversity in California and the Great Basin Assessment of Available Climate Models and Projections for the Southwest Region Identifying the Risk of Runoff and Erosion in Hawaiʻi’s National Parks Learning From Recent Snow Droughts To Improve Forecasting of Water Availability for People and Forests Snow Drought: Recognizing and Understanding its Impacts in Alaska Water Resource Relevant Hydroclimatic Reconstructions for Western North America