Skip to main content
Advanced Search

Filters: Tags: Ocean Waves (X) > Categories: Data (X)

127 results (93ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
One of the major challenges in understanding changes in coastal processes in western Alaska is the lack of measured ocean data in the region. ​This project leveraged existing human resources, and physical and computational infrastructure to collect and disseminate oceanographic observations in the Bering Sea. From instrument restoration, transport and deployment, through data streaming, recovery and dissemination, this project considered the end to end supports necessary to gather, promote, and serve oceanographic data along Alaska’s Western coast. Real‐time sea‐state conditions were transmitted via both high and low bandwidth sites, directly benefited emergency managers and local communities, particularly in dealing...
thumbnail
We present correction coefficients for hourly wave height and period hind casts for 32 sites throughout the Channel Islands National Park and San Nicolas Island. Each site is described in terms of its location, orientation, and transect depth. To use this table, first generate a site-specific wave height and period hind cast using the California Coastal Data Information Program (CDIP) Monitoring and Prediction (MOP) System (https://cdip.ucsd.edu/documents/index/product_docs/mops/mop_intro.html).
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...


map background search result map search result map Site table and bias corrections for Coastal Data Information Program (CDIP) hind casts at the California Channel Islands CoSMoS v3.1 flood hazard projections: 1-year storm in San Barbara County CoSMoS v3.1 water level projections: 20-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Francisco County CoSMoS v3.1 water level projections: average conditions in San Francisco County CoSMoS v3.1 flood hazard projections: 100-year storm in San Francisco County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Francisco County CoSMoS v3.1 water level projections: average conditions in San Francisco County CoSMoS v3.1 flood hazard projections: 100-year storm in San Francisco County CoSMoS v3.1 flood hazard projections: 1-year storm in San Barbara County CoSMoS v3.1 water level projections: 20-year storm in Santa Barbara County Site table and bias corrections for Coastal Data Information Program (CDIP) hind casts at the California Channel Islands