Skip to main content
Advanced Search

Filters: Tags: North Central CASC (X)

312 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
In 1969, researchers developed the first global circulation model (Ruttiman 2006); however, it was not until 2014 that modelers first attempted a global ecosystem and biodiversity model that included human pressures (i.e., the Madingley Model) (Harfoot et al. 2014). Other large-scale models of biodiversity exist, such as GLOBIO (Alkemade et al. 2009), but to date there are no well accepted global biodiversity models similar to global circulation models that can help guide global biodiversity policy development and targets. The lack of global biodiversity models compared to the extensive array of general circulation models provides a unique opportunity for climate, ecosystem, and biodiversity modeling experts to...
thumbnail
Locating meadow study sitesMeadow centers as recorded in the ‘Copy of sitecords_areaelev from Caruthers thesis.xls’ file delivered by Debinski in November 2012 were matched to polygons as recorded in files ‘teton97map_area.shp’ and ‘gallatin97map_area.shp’ both also delivered by Debinski in November 2012.In cases where the meadow center did not fall within a meadow polygon, if there was a meadow polygon of the same meadow TYPE nearby (judgment was used here), the meadow center was matched with the meadow polygon of same meadow TYPE. In total, 29 of 30 Gallatin meadow sites and 21 of 25 Teton meadow sites were positively located.Identifying meadow pixels for analysisThe native MODIS 250-meter grid was reprojected...
The project team, funded by the NC CSC, worked in two river basins in southwestern Colorado (San Juan and Gunnison) to focus on five objectives: 1) understand social-ecological vulnerabilities, 2) create scenarios and models to facilitate decision making, 3) develop actionable adaptation strategies, 4) identify institutional arrangements needed for adaptation, and 5) document and transfer best practices. The team was interested in the intersection of the climate system, the ecological system, and the social system. Social and natural scientists worked together and with many stakeholders to achieve these objectives.
Climate policy developers and natural resource managers frequently desire high-resolution climate data to prepare for future effects of climate change. But they face a long-standing problem: the vast majority of climate models have been run at coarse resolutions—from hundreds of kilometers in global climate models (GCMs) down to 25–50 kilometers in regional climate models (RCMs).
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
thumbnail
This landcover raster was generated through a Random Forest predictive model developed in R using a combination of image-derived and ancillary variables, and field-derived training points grouped into 18 classes. Overall accuracy, generated internally through bootstrapping, was 75.5%. A series of post-modeling steps brought the final number of land cover classes to 28.
thumbnail
The goal of this project was to inform implementation of the Greater Yellowstone Coordinating Committee (GYCC) Whitebark Pine (WBP) subcommittee’s “WBP Strategy” based on climate science and ecological forecasting. Project objectives were to: 1. Forecast ecosystem processes and WBP habitat suitability across the Greater Yellowstone Area (GYA) under alternative IPCC future scenarios; 2. Improve understanding of possible response to future climate by analyzing WBP/climate relationships in past millennia; 3. Develop WBP management alternatives; 4. Evaluate the alternatives under IPCC future scenarios in terms of WBP goals, ecosystem services, and costs of implementation; and 5. Draw recommendations for implementation...
thumbnail
Training points collected in the field between 2012 and 2013 were grouped into 18 classes: Forested Burn (66), Foothill Woodland Steppe Transition (73), Greasewood Flat (73), Greasewood Steppe (239), Greasewood Sage Steppe (277), Great Plains Badlands (166), Great Plains Riparian (255), Low Density Sage Steppe (776), Medium Density Sage Steppe (783), Mixed Grass Prairie (555), Mixed Grass Prairie Burned (278), Ponderosa Pine Woodland and Shrubland (512), Riparian Floodplain (223), Semi-Desert Grassland (103), Sparsely Vegetated Mixed Shrub (252), Silver Sage Flat (70) , Silver Sage Steppe (64), and Water (246). When insufficient field data were available for a class, we augmented it through photointerpretation of...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174045): Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM,...
The National Climate Assessment summarizes the impacts of climate change on the United States, now and in the future. A team of more than 300 experts guided by a 60-member Federal Advisory Committee produced the report, which was extensively reviewed by the public and experts, including federal agencies and a panel of the National Academy of Sciences. The report can be explored interactively at http://nca2014.globalchange.gov.
America’s remaining grassland in the Prairie Pothole Region (PPR) is at risk of being lost to crop production. When crop prices are high, like the historically high corn prices that the U.S. experienced between 2008 and 2014, the risk of grassland conversion is even higher. Changing climate will add uncertainties to any efforts toward conservation of grassland in the PPR. Grassland conversion to cropland in the region would imperil nesting waterfowl among other species and further impair water quality in the Mississippi watershed. In this project, we sought to contribute to the understanding of land conversion in the PPR with the aim to better target the use of public and private funds allocated toward incentivizing...
Abstract (from http://www.springer.com/us/book/9789400775145): This volume offers a scientific assessment of the effects of climatic variability and change on forest resources in the United States. Derived from a report that provides technical input to the 2013 U.S. Global Change Research Program National Climate Assessment, the book serves as a framework for managing U.S. forest resources in the context of climate change. The authors focus on topics having the greatest potential to alter the structure and function of forest ecosystems, and therefore ecosystem services, by the end of the 21st century. Part I provides an environmental context for assessing the effects of climate change on forest resources, summarizing...
Categories: Publication; Types: Citation; Tags: North Central CASC
The Eastern Shoshone and Northern Arapaho Tribes on the Wind River Indian Reservation in Wyoming are preparing for drought and other climate fluctuations with help from a broad coalition of scientists. Read More: https://www.drought.gov/drought/sites/drought.gov.drought/files/media/whatisnidis/Newsletter/October%202015%20v4.pdf
Members of the Eastern Shoshone and Northern Arapaho Tribes have been working with an interdisciplinary team of social, ecological, and climate scientists from the North Central CSC, the High Plains Regional Climate Center, and the National Drought Mitigation Center along with other university and agency partners to prepare regular climate and drought summaries to aid in managing water resources on the Wind River Reservation and in surrounding areas.
thumbnail
One of the biggest challenges facing resource managers today is not knowing exactly when, where, or how climate change effects will unfold. To help federal land managers address this need, the North Central CASC has been working with the National Park Service to pioneer an approach for incorporating climate science and scenario planning into NPS planning processes, in particular Resource Stewardship Strategies (RSS). These strategies serve as a long-range planning tool for a national park unit to achieve its desired natural and cultural resource conditions, and are used to guide a park’s full spectrum of resource-specific management plans and day-to-day management activities. To support adaptation planning within...
thumbnail
Grasslands in the northern Great Plains are important ecosystems that support local economies, tribal communities, livestock grazing, diverse plant and animal communities, and large-scale migrations of big game ungulates, grassland birds, and waterfowl. Climate change and variability impact how people and animals live on and interact with grasslands, and can bring more frequent droughts, fires, or new plant species that make managing these landscapes challenging. Understanding how climate change and variability will impact grassland ecosystems and their management in the 21st century first requires a synthesis of what is known across all of these scales and a gap analysis to identify key areas of focus for future...
thumbnail
These datasets contain time series of anomalies, relative to 1950-1999 period, in the annual and seasonal soil moisture (%) and runoff (%) in the Pinyon-Juniper ecosystem of Southwest Colorado for the three future climate scenarios considered in the Social Ecological and Climate Resiliency (SECR) project.


map background search result map search result map Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy Charles M. Russell National Wildlife Refuge Spot Landcover Classification in Relation to Greater Sage Grouse Training Points Water Balance and Habitat Suitability Data for Pinus Albicaulis in Greater Yellowstone Ecosystem An analysis of montane meadow drying in the Greater Yellowstone Ecosystem using remotely sensed NDVI from the MODIS period of record (lsp metrics) Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies Time Series of the Anomalies in Soil Moisture and Runoff Between 1950-2099 for the Pinyon-Juniper Ecosystem of Southwest Colorado Under Three Future Climate Scenarios Synthesis of Climate Impacts and Adaptation on Grassland Ecosystems in the Northern Great Plains Refining Guidance for Incorporating Climate Science and Scenario Planning into National Park Service Resource Stewardship Strategies An analysis of montane meadow drying in the Greater Yellowstone Ecosystem using remotely sensed NDVI from the MODIS period of record (lsp metrics) Time Series of the Anomalies in Soil Moisture and Runoff Between 1950-2099 for the Pinyon-Juniper Ecosystem of Southwest Colorado Under Three Future Climate Scenarios Training Points Charles M. Russell National Wildlife Refuge Spot Landcover Classification in Relation to Greater Sage Grouse Water Balance and Habitat Suitability Data for Pinus Albicaulis in Greater Yellowstone Ecosystem Synthesis of Climate Impacts and Adaptation on Grassland Ecosystems in the Northern Great Plains Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy