Skip to main content
Advanced Search

Filters: Tags: Nitrification (X)

190 results (34ms)   

View Results as: JSON ATOM CSV
Shifts in plant community structure in shrub and grass-dominated ecosystems are occurring over large land areas in the western US. It is not clear what effect this vegetative change will have on rates of carbon and nitrogen cycling, and thus long-term ecosystem productivity. To study the effect of different plant species on the decomposability of soil organic substrates and rates of C- and N-cycling, we conducted laboratory incubations of soils from a 15-yr-old experimental plot where big sagebrush (Artemisia tridentata Nutt.) and crested wheatgrass (Agropyron desertorum [Fisch.] Schult.) plants had been planted in a grid pattern. Soil samples collected from beneath crested wheatgrass had significantly greater total...
thumbnail
The Maumee River transports huge loads of nitrogen (N) and phosphorus (P) to Lake Erie. The increased concentrations of N and P are causing eutrophication of the lake, creating hypoxic zones, and contributing to phytoplankton blooms. It is hypothesized that the P loads are a major contributor to harmful algal blooms that occur in the western basin of Lake Erie, particularly in summer. The Maumee River has been identified by the United States Environmental Protection Agency as a priority watershed where action needs to be taken to reduce nutrient loads. This study quantified rates of biogeochemical processes affecting downstream flux of N and P by 1) measuring indices of potential sediment P retention and 2) measuring...


map background search result map search result map Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2021 Data Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2021 Data