Skip to main content
Advanced Search

Filters: Tags: New York (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

642 results (116ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
"NewEngland_pkflows.PRT" is a text file that contains results of flood-frequency analysis of annual peak flows from 186 selected streamflow gaging stations (streamgages) operated by the U.S. Geological Survey (USGS) in the New England region (Maine, Connecticut, Massachusetts, Rhode Island, New York, New Hampshire, and Vermont). Only streamgages in the region that were also in the USGS "GAGES II" database (https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml) were considered for use in the study. The file was generated by combining PeakFQ output (.PRT) files created using version 7.0 of USGS software PeakFQ (https://water.usgs.gov/software/PeakFQ/; Veilleux and others, 2014) to conduct flood-frequency...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
thumbnail
This dataset provides timeseries data on water quality and quantity, as collected or computed from outside sources. The format is many tables with one row per time series observation (1 tab-delimited file per site-variable combination, 1 zip file per site). This compilation of data is intended for use in estimating or interpreting metabolism. Sites were included if they met the initial criteria of having at least 100 dissolved oxygen observations and one of the accepted NWIS site types ('ST','ST-CA','ST-DCH','ST-TS', or 'SP'). This dataset is part of a larger data release of metabolism model inputs and outputs for 356 streams and rivers across the United States (https://doi.org/10.5066/F70864KX). The complete release...
Tags: 007, 012, AK, AL, AR, All tags...
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay River Input Monitoring Network (RIM) stations for the period 1985 through 2019. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the RIM watersheds.
thumbnail
Floating transient electromagnetic (FloaTEM) data were acquired on the Upper Delaware River during December 2018. During the survey, approximately 10 line-kilometers were collected in the Upper Delaware River, near USGS boring 12008-14 (https://webapps.usgs.gov/GeoLogLocator/#!/search) near Barryville, New York study area. Data were collected by members of the U.S. Geological Survey, Hydrogeophysics Branch, New England Water Science Center, and the National Park Service UPDE. FloaTEM data acquired along the Delaware River in Sullivan County, in New York, were collected to test a new continuous water-borne transient electromagnetic data collection platform, and to characterize the subsurface resistivity structure....
thumbnail
This Benthic Invertebrate Community Analysis dataset, a conceptual subgroup of the Lake Erie Ecological Investigations (LEEI) dataset, focuses on the benthic invertebrates sampled at Areas of Concern (AOCs) on Lake Erie. Per the Quality Assurance Project Plan (QAPP), the invertebrate samples were taken from sediments remaining from the sediment analysis. Identification of the invertebrates was completed by the same invertebrate taxonomist for both the 1998-2000 evaluation and 1986-87 historical evaluation (Smith et al. 1994) for increased consistency. Oligochaetes were identified to species if possible, chironomids were identified to genus, as adult specimens are needed for specific identification, and other taxa...
Categories: Data; Tags: AOCs, Ameiurus nebulosus, Ashtabula, Ashtabula River, Black River, All tags...
thumbnail
This metadata record documents 11 comma delimited tables representing the amount of reported best management practice (BMP) implementation for the years from 1985 to 2014 at three geographic scales: county or land-river modeling segment, River Input Monitoring (RIM) station drainage areas, and the entire Chesapeake Bay Watershed (CBWS). Data originated from the Chesapeake Bay Watershed jurisdictions including Maryland, Pennsylvania, Virginia, Delaware, New York, West Virginia, and the District of Columbia. Data were reported to the Chesapeake Bay Program for an annual review of progress toward meeting nitrogen, phosphorus, and sediment reduction goals.
thumbnail
Nitrogen, phosphorus, and suspended-sediment loads, and changes in loads, in major rivers across the Chesapeake Bay watershed have been calculated using monitoring data from the Chesapeake Bay Nontidal Network (NTN) stations for the period 1985 through 2018. Nutrient and suspended-sediment loads and changes in loads were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). The load results represent the total mass of nitrogen, phosphorus, and suspended sediment that was exported from each of the NTN watersheds. To determine the trend in loads, the annual load results are flow normalized to integrate out the year-to-year variability in river discharge....
thumbnail
Groundwater residence times were simulated for the major regional aquifers of the Northern Atlantic Coastal Plain aquifer system from New York to North Carolina using particle tracking in a regional groundwater flow model. Millions of particles were distributed throughout the aquifers of the North Atlantic Coastal Plain in a MODFLOW model with a volume-weighted algorithm, then tracked backwards using MODPATH6 (Pollock, 2012) until termination of their paths at their sources of origin, usually the simulated water table. Particles were tracked under simulated transient hydrologic conditions from the reference time of January 1, 2018 backwards to 1900, then under simulated steady-state conditions prior to 1900 until...
thumbnail
Measures used to assess trends in the 10th, 50th, and 90th quantiles of annual peak streamflow from 1916-2015 at 2,683 U.S. Geological Survey stations and within 191 4-digit HUCs in the conterminous United States. Linear quantile regression was applied to the selected quantiles of log-transformed annual peak streamflow to represent trends for a range of flood frequencies from small, common floods to large, infrequent floods. Comparative trends in pairs of quantiles were characterized as coherent, convergent, or divergent by comparing the slopes of linear quantile regression equations.
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
A digital model of the sedimentary Northern Atlantic Coastal Plain aquifer system is composed of 20 rasters and hydrogeologic unit extent polygons. Rasters describe the top elevations of regional aquifers and confining units at a resolution of 2640 feet (1/2 mile). The rasters are clipped to the extent polygons, which represent the spatial extents of the hydrogeologic units onshore and several miles offshore. This three-dimensional hydrogeologic model was constructed as part of a U.S. Geological Survey Groundwater Resources Program study of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system, including parts of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina....
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
thumbnail
This dataset is a geographic information systems shapefile containing basin polygons, site information, basin characteristics, results of flood-frequency analysis, and results of Bayesian weighted least-squares / Bayesian generalized least-squares (B-WLS/B-GLS) analysis for 183 streamflow gaging stations (streamgages) operated by the U.S. Geological Survey (USGS) in parts of hydrologic unit 02 (mid-Atlantic region) in eastern New York and Pennsylvania and the surrounding states of Connecticut, Maryland, Massachusetts, New Jersey, Vermont, Virginia, West Virginia that were used to estimate regional skewness of annual peak flows. Bayesian weighted least-squares / Bayesian generalized Least-Squares (B-WLS/B-GLS) regression...
thumbnail
The Critical Minerals in Archived Mine Samples Database (CMDB) contains chemistry and geologic information for historic ore and ore-related rock samples from mineral deposits in the United States. In addition, the database contains samples from archetypal deposits from 27 other countries in North America, South America, Asia, Africa and Europe. Samples were obtained from archived ore collections under the U.S. Geological Survey's project titled "Quick Assessment of Rare and Critical Metals in Ore Deposits: A National Assessment" (2008 to 2013) in an effort to begin an assessment of the Nations' previously mined ore deposits for critical minerals. Mineralized and altered rock samples were provided by the Colorado...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Alaska, Argentina, Arizona, Arkansas, Australia, All tags...
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in dense time series of Landsat image stacks to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Outputs of the BAECV algorithm consist of pixel-level burn probabilities for each Landsat scene, and annual burn probability, burn classification, and burn date composites. These products were generated for the conterminous United States for 1984 through 2015. These data are also available for download at https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1.1_2017/...


map background search result map search result map Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system Metabolism estimates for 356 U.S. rivers (2007-2017): 3. Timeseries data 1) Best management practice implementation in the Chesapeake Bay watershed from 1985 to 2014 Lake Erie Ecological Investigations 1980-2000: Benthic Invertebrate Community Analysis Trends in annual peak streamflow quantiles for 2,683 U.S. Geological Survey streamgages in the conterminous United States Coastal wetlands from Jamaica Bay to western Great South Bay, New York PeakFQ output files for selected streamflow gaging stations operated by the U.S. Geological Survey in the New England region that were used to estimate regional skewness of annual peak flows ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2010–2011 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2012 Statistical summaries of simulated groundwater residence times for the 10 regional aquifers of the Northern Atlantic Coastal Plain aquifer system, at a 1 square-mile grid resolution Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2016 Global Geochemical Database for Critical Minerals in Archived Mine Samples Basin polygons and characteristics, site information, results of flood-frequency analysis, and results of Bayesian weighted least-squares / Bayesian generalized least-squares (B-WLS/B-GLS) analysis for 183 streamgages operated by the U.S. Geological Survey in parts of hydrologic unit 02 in eastern New York and Pennsylvania and the surrounding states of Connecticut, Maryland, Massachusetts, New Jersey, Vermont, Virginia, and West Virginia Floating transient electromagnetic (FloaTEM) surveys in the Delaware River near Barryville, New York Chesapeake Bay River Input Monitoring Network 1985-2019: WRTDS output data Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2012 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2010–2011 Floating transient electromagnetic (FloaTEM) surveys in the Delaware River near Barryville, New York Coastal wetlands from Jamaica Bay to western Great South Bay, New York ElevMHW: Elevation adjusted to local mean high water: Fire Island, NY, 2014 Lake Erie Ecological Investigations 1980-2000: Benthic Invertebrate Community Analysis 1) Best management practice implementation in the Chesapeake Bay watershed from 1985 to 2014 Nitrogen, phosphorus, and suspended-sediment loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2018 (ver. 2.0, May 2020) Chesapeake Bay River Input Monitoring Network 1985-2019: WRTDS output data PeakFQ output files for selected streamflow gaging stations operated by the U.S. Geological Survey in the New England region that were used to estimate regional skewness of annual peak flows Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system Basin polygons and characteristics, site information, results of flood-frequency analysis, and results of Bayesian weighted least-squares / Bayesian generalized least-squares (B-WLS/B-GLS) analysis for 183 streamgages operated by the U.S. Geological Survey in parts of hydrologic unit 02 in eastern New York and Pennsylvania and the surrounding states of Connecticut, Maryland, Massachusetts, New Jersey, Vermont, Virginia, and West Virginia Statistical summaries of simulated groundwater residence times for the 10 regional aquifers of the Northern Atlantic Coastal Plain aquifer system, at a 1 square-mile grid resolution Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2015 An Unvegetated to Vegetated Ratio (UVVR) for coastal wetlands of the United States - 2016 Trends in annual peak streamflow quantiles for 2,683 U.S. Geological Survey streamgages in the conterminous United States Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Metabolism estimates for 356 U.S. rivers (2007-2017): 3. Timeseries data Global Geochemical Database for Critical Minerals in Archived Mine Samples