Skip to main content
Advanced Search

Filters: Tags: Multiple stressors (X)

15 results (185ms)   

View Results as: JSON ATOM CSV
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically, the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for high oil and gas development, low population size, and no climate component. The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number...
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically, the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for low oil and gas development, low population size, and with effects of climate change under an RCP 8.5 scenario (2050). The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types...
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically, the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for low oil and gas development, high population size, and no climate component. The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number...
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically, the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for high oil and gas development, low population size, and with effects of climate change under an RCP 8.5 scenario (2050) . The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well...
thumbnail
Biological, chemical, physical habitat, riparian, and land-use data collected from the Midwest streams by the National Water Quality Project Regional Stream Quality Team. Data were used to develop structural equation models for the purpose of understanding how networks of potential stressors influence stream ecological health. For more information about the Midwest Regional Stream Quality Assessment please go to https://doi.org/10.3133/fs20123124.
thumbnail
This data set defines boundaries of oil and gas project areas, greater sage-grouse (Centrocercus urophasianus) core areas, and non-core and non-project areas within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Specifically , the data represents results from the manuscript “Combined influences of future oil and gas development and climate on potential Sage-grouse declines and redistribution” for medium oil and gas development, high population size, and no climate component. The oil and gas development scenario were based on an energy footprint model that simulates well, pad, and road patterns for oil and gas recovery options that vary in well types (vertical and directional) and number...
thumbnail
This project represents the data used in “Influences of potential oil and gas development and future climate on sage-grouse declines and redistribution.” The data sets describe greater sage-grouse (Centrocercus urophasianus) population change, summarized in different boundaries within the Wyoming Landscape Conservation Initiative (WLCI; southwestern Wyoming). Population changes were based on different scenarios of oil and gas development intensities, projected climate models, and initial sage-grouse population estimates. Description of data sets pertaining to this project: Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with and without...


    map background search result map search result map Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling: Model Input Data Influences of Potential Oil and Gas Development and Future Climate on Sage-Grouse Declines and Redistribution Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with no effects of climate change (2006-2062) Greater sage-grouse population change (percent change) over 50-years in a high oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) Greater sage-grouse population change (percent change) in a low oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) Greater sage-grouse population change (percent change) over 50-years in a low oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) Greater sage-grouse population change (percent change) in a moderate oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) Influences of Potential Oil and Gas Development and Future Climate on Sage-Grouse Declines and Redistribution Greater sage-grouse population change (percent change) over 50-years in a high oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) Greater sage-grouse population change (percent change) over 50-years in a low oil and gas development, low population estimate scenario, and with effects of climate change under an RCP 8.5 scenario (2050) Greater sage-grouse population change (percent change) in a low oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) Greater sage-grouse population change (percent change) in a moderate oil and gas development, high population estimate scenario, and with no effects of climate change (2006-2062) Greater sage-grouse population change (percent change) in a high oil and gas development, low population estimate scenario, and with no effects of climate change (2006-2062) Linking the Agricultural Landscape of the Midwest to Stream Health with Structural Equation Modeling: Model Input Data