Skip to main content
Advanced Search

Filters: Tags: MRVA (X)

29 results (159ms)   

View Results as: JSON ATOM CSV
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an ATV, with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square kilometers, with 25 m separation between survey lines. Data were manually edited for noise sources such as powerlines or other buried structures, and averaged to regular output soundings every 5 m along survey lines. This data release contains the processed data that have been averaged and culled to produce final resistivity models. Digital data...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an ATV, with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square kilometers, with 25 m separation between survey lines. Raw data are provided here.
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Geophysics, All tags...
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021 and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. Grids were discretized in the horizontal dimension to align with the 1 kilometer (km) x 1 km National Hydrogeologic Grid (NHG; Clark et al. 2018), and vertically discretized into both 5 meter (m) depth slices and 5 m elevation slices. Ten “facies classes” were defined to categorize materials expected to have similar hydrologic and geologic properties based on their electrical resistivity (i.e. low classes correspond...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
Airborne frequency domain electromagnetic (AEM) data were acquired in a grid pattern consisting of many west-east oriented survey lines over the Tallahatchie River during November 2018. Data were collected by members of the U.S. Geological Survey, Crustal Geophysics and Geochemistry Science Center Group, and CGG. AEM data acquired in Leflore County, Mississippi, were collected to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation of the Mississippi Alluvial Plain. Airborne EM data were acquired with the Resolve (CGG Airborne) frequency-domain instrument over the same reach 18 line-kilometers that follow the Tallahatchie River in Leflore County in Mississippi...
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021, and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. The 3D elevation grid was used to quantify across the MAP region 1) the occurrence and thickness of surficial (< 15 meter (m) depth) confining material, 2) the top and bottom elevation corresponding to the surficial confining material, and 3) a metric representing the degree of surface confinement or connectivity that ranges from fully confining conditions to high potential hydrologic connectivity. These products...
thumbnail
Surface and water-borne geophysical methods can provide information for the characterization of the subsurface structure of the earth for aquifer investigations. Floating and towed transient electromagnetic (FloaTEM and tTEM) surveys provide resistivity soundings of the subsurface, which can be related to lithology and hydrogeology. In the TEM method, a primary electrical current is cycled through a wire in a transmitter loop (Tx), which in turn produces a static primary magnetic field. When the current in the TX loop is abruptly terminated, secondary electrical currents are induced in the earth that move downward and outward decaying with time. The decay of the secondary electrical field is controlled by the subsurface...
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Bayou Bartholomew, Bayou Meto, Boeuf River, Cache River, All tags...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
Towed transient electromagnetic (tTEM) data were acquired adjacent to the Tallahatchie River during March 2018. During the survey, approximately 35 line-kilometers were collected in the Shellmound, Mississippi study area. Data were collected by members of the U.S. Geological Survey, Hydrogeophysics Branch, and the Aarhus University HydroGeophysics Group. FloaTEM data acquired near the Tallahatchie River in Leflore County, in Mississippi, were collected to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation of the Mississippi Alluvial Plain. tTEM data were collected using an Aarhus University HydroGeophysics Group tTEM unit using a transmitter loop (Tx)...
thumbnail
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021 and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. Grids were discretized in the horizontal dimension to align with the 1 kilometer (km) x 1 km National Hydrogeologic Grid (NHG; Clark et al. 2018), and vertically discretized into both 5 meter (m) depth slices and 5 m elevation slices. To support hydrogeologic and geologic studies within the MAP region and the Mississippi River Valley Alluvial aquifer (MRVA), derivative products were calculated from the 3D resistivity...
thumbnail
Towed transient electromagnetic (tTEM) data were acquired at two field locations near Shellmound, Mississippi during March 2018. During the survey, approximately 34.7 line-kilometers were collected in the study area. Data were collected by members of the U.S. Geological Survey, Hydrogeophysics Branch, and the Aarhus University Hydrogeophysics Group. tTEM data acquired along the approximately 35-line kilometers in two agricultural fields near the banks of the Tallahatchie River in Leflore County, Mississippi. Data were collected to characterize the subsurface resistivity structure in support of a U.S. Geological Survey groundwater investigation of the Mississippi Alluvial Plain. tTEM data were collected using an...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...


map background search result map search result map AEM inverted resistivity models Airborne EM, magnetic, and radiometric survey data Processed airborne magnetic and radiometric grids AEM processed survey data Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019 AEM inverted resistivity models Processed airborne magnetic and radiometric grids AEM processed survey data Unprocessed ground-based EM survey data Processed ground-based EM survey data Floating and Towed Transient Electromagnetic Surveys used to Characterize Hydrogeology underlying Rivers and Estuaries: March - December 2018 Airborne electromagnetic (AEM) survey from the Tallahatchie River near Shellmound, Mississippi Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain Mississippi Alluvial Plain (MAP): Electrical Resistivity & Facies Classification Grids Mississippi Alluvial Plain (MAP): Surface Confining Layer & Connectivity Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Airborne EM, magnetic, and radiometric survey data AEM processed survey data tTEM processed survey data, Shellmound, Mississippi, March 2018 Unprocessed ground-based EM survey data Processed ground-based EM survey data tTEM processed survey data, Shellmound, Mississippi, March 2018 AEM inverted resistivity models Airborne EM, magnetic, and radiometric survey data Processed airborne magnetic and radiometric grids AEM processed survey data AEM inverted resistivity models Processed airborne magnetic and radiometric grids AEM processed survey data Airborne electromagnetic (AEM) survey from the Tallahatchie River near Shellmound, Mississippi Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019 Mississippi Alluvial Plain (MAP): Electrical Resistivity & Facies Classification Grids Mississippi Alluvial Plain (MAP): Surface Confining Layer & Connectivity Airborne EM, magnetic, and radiometric survey data AEM processed survey data Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain Floating and Towed Transient Electromagnetic Surveys used to Characterize Hydrogeology underlying Rivers and Estuaries: March - December 2018