Skip to main content
Advanced Search

Filters: Tags: Land Subsidence (X)

9 results (7ms)   

View Results as: JSON ATOM CSV
thumbnail
Potential tsunami hazards for the Fox Islands communities of Unalaska/Dutch Harbor and Akutan were evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking into account historical observations. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Unalaska and Akutan are thought to be thrust earthquakes in the Fox Islands region with magnitudes ranging from Mw 8.8 to Mw 9.1 that have their greatest slip at 30-40 km (18-25 mi) depth. We also consider Tohoku-type ruptures and an outer-rise...
thumbnail
Staff from Alaska Earthquake Center, Geophysical Institute and Alaska Division of Geological & Geophysical Surveys evaluated potential tsunami hazards for the city of Sand Point, on Popof Island in the Shumagin Islands archipelago. We numerically modeled the extent of inundation from tsunami waves generated by local and distant earthquake sources. We considered the results in light of historical observations. The worst-case scenarios are defined by analyzing results of the sensitivity study of the tsunami dynamics with respect to different slip distributions along the Aleutian megathrust. For the Sand Point area, the worst-case scenarios are thought to be thrust earthquakes in the Shumagin Islands region with magnitudes...
thumbnail
The engineering-geologic map is derived electronically, using Geographic Information System (GIS) software, from the surficial-geologic map of the second segment of the proposed natural gas pipeline corridor through the upper Tanana valley, a 12-mi-wide (19.3-km-wide) area that straddles the Alaska Highway through the upper Tanana River valley from the Robertson River eastward to near Tetlin Junction in the Tanacross Quadrangle (Reger and Hubbard, PIR 2009-6A). Surficial-geologic units were initially identified by interpretation of false-color ~1:65,000-scale infrared aerial photographs taken in July 1978, August 1980, and August 1981 and locally verified by field checking in 2007 and 2008. The map shows the distribution...
thumbnail
Potential tsunami hazard for the Umnak Island community of Nikolski is evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Nikolski are thought to be thrust earthquakes in the Umnak Island region with their greatest slip at 10-30 km (6.2-19 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture in the area of Umnak Island. The maximum predicted water depth on Main Street is about 15 m (49 ft), while the maximum current...
thumbnail
This report provides detailed (1:63,360-scale) mapping of the Tanana A-1 and A-2 quadrangles (500 square miles; equivalent to eight 7.5-minute quadrangles). The area is part of the Manley Hot Springs-Tofty mining districts and adjacent to the Rampart mining district to the south of the Tanana B-1 Quadrangle. This report includes detailed geologic construction materials and geologic hazards data. The Tanana A-1 and A-2 Quadrangles and surrounding area comprise several isolated mountainous ridges in the western Yukon-Tanana Upland of interior Alaska.
thumbnail
Potential tsunami hazards for the Alaska Peninsula communities of King Cove and Cold Bay were evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking into account historical observations. Worst-case hypothetical scenarios are defined by analyzing the tsunami dynamics related to various slip distributions along the Aleutian megathrust. Our results show that the worst-case scenarios for King Cove and Cold Bay are thrust earthquakes in the western Alaska Peninsula region, with magnitudes ranging from Mw 8.9 to Mw 9.3, which have their greatest slip at 10-20 km (6-12 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture...
thumbnail
Staff from Alaska Earthquake Center, Geophysical Institute and Alaska Division of Geological & Geophysical Surveys evaluated potential potential tsunami hazard for the communities of Kodiak, Womens Bay, and for the U.S. Coast Guard base on Kodiak Island by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Alaska-Aleutian megathrust. The worst-case scenarios for the Kodiak communities are thought to be the subduction zone earthquakes offshore Kodiak Island with their greatest slip at 5-35 km (3.1-22...
thumbnail
Potential tsunami hazard for the Alaska Peninsula communities of Chignik and Chignik Lagoon is evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Alaska-Aleutian megathrust. The worst-case scenarios for Chignik area communities are thought to be thrust earthquakes along the Alaska Peninsula with their greatest slip at 5-35 km (3.1-22 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture along the Alaska Peninsula. The maximum predicted water depth on Anderson Street...
thumbnail
The engineering-geologic map, on two sheets, is derived electronically from the surficial-geologic map of the initial segment of the proposed natural gas pipeline corridor through the upper Tanana valley (Reger and others, PIR 2008-3a) using Geographic Information System (GIS) software. Surficial-geologic units were initially identified by interpretation of false-color ~1:63,000-scale infrared aerial photographs taken in July 1978, August 1980, and August 1981 and locally verified by field checking in 2006 and 2007. The map shows the distribution of surficial-geologic and bedrock units grouped genetically with common properties that are typically significant for engineering applications.


    map background search result map search result map Derivative engineering geologic map of the Tanana A-1 and A-2 quadrangles, central Alaska Engineering-geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska Engineering-geologic map of the Alaska Highway Corridor, Robertson River to Tetlin Junction, Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska Tsunami inundation maps for King Cove and Cold Bay communities, Alaska Tsunami inundation map for the village of Nikolski, Alaska Tsunami inundation maps for the communities of Chignik and Chignik Lagoon, Alaska Tsunami inundation maps for the city of Sand Point, Alaska Updated tsunami inundation maps of the Kodiak area, Alaska Tsunami inundation maps for the communities of Chignik and Chignik Lagoon, Alaska Tsunami inundation map for the village of Nikolski, Alaska Updated tsunami inundation maps of the Kodiak area, Alaska Tsunami inundation maps for King Cove and Cold Bay communities, Alaska Derivative engineering geologic map of the Tanana A-1 and A-2 quadrangles, central Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska Engineering-geologic map of the Alaska Highway Corridor, Robertson River to Tetlin Junction, Alaska Engineering-geologic map, Alaska Highway corridor, Delta Junction to Dot Lake, Alaska