Skip to main content
Advanced Search

Filters: Tags: LANDSAT (X)

305 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Polygon locations of fire perimeters in the Sky Island mountain ranges in the Madrean Archipelago Ecoregion of the southwestern United States and northern Mexico. These fires occurred from 1985 to 2011 and were mapped using Landsat satellite imagery.
thumbnail
The USDA, NASS Cropland Data Layer (CDL) is a raster, geo-referenced, crop-specific land cover data layer with a ground resolution of 56 meters. The CDL is produced using satellite imagery from the Indian Remote Sensing RESOURCESAT-1 (IRS-P6) Advanced Wide Field Sensor (AWiFS) collected during the current growing season. Some Cropland Data Layer states used Landsat 5 TM and/or Landsat 7 ETM+ satellite imagery to supplement the classification. Ancillary classification inputs include: the United States Geological Survey (USGS) National Elevation Dataset (NED), the USGS National Land Cover Dataset 2001 (NLCD 2001), and the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer...
thumbnail
The evapotranspiration (ET) datasets were created under contract for this study by the University of Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial distribution of ET. The METRIC technique uses thermal infrared Landsat imagery to quantify actual evapotranspiration at a 30-meter resolution that can be related to individual irrigated fields. Because evaporation uses heat energy, ground surfaces with large ET rates are left cooler as a result of ET than ground surfaces that have less ET. As a consequence, irrigated fields appear in the Landsat images as cooler than nonirrigated...
thumbnail
A validation assessment of Land Cover Monitoring, Assessment, and Projection Collection 1.1 annual land cover products (1985–2019) for the Conterminous United States was conducted with an independently collected reference data set. Reference data land cover attributes were assigned by trained interpreters for each year of the time series (1984–2018) to a reference sample of 24,971 randomly-selected Landsat resolution (30m x 30m) pixels. The interpreted land cover attributes were crosswalked to the LCMAP annual land cover classes: Developed, Cropland, Grass/Shrub, Tree Cover, Wetland, Water, Snow/Ice and Barren. Validation analysis directly compared reference labels with annual LCMAP land cover map attributes by...
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in dense time series of Landsat image stacks to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Outputs of the BAECV algorithm consist of pixel-level burn probabilities for each Landsat scene, and annual burn probability, burn classification, and burn date composites. These products were generated for the conterminous United States for 1984 through 2015. These data are also available for download at https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1.1_2017/...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The LCMAP Intensification Reference Data Product was utilized for evaluation and validation of the Land Change Monitoring, Assessment, and Projection (LCMAP) land cover and land cover change products. The LCMAP Intensification Reference Data Product includes the collection of an independent dataset of 2,000 30-meter by 30-meter plots selected via stratified random sampling across the conterminous United States (CONUS). This dataset was collected via manual image interpretation to aid in validation of the land cover and land cover change products as well as area estimates. The LCMAP Intensification Reference Data Product collected variables related to primary and secondary land use, primary and secondary land cover(s),...
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after wildfire by providing habitat and seed sources. With increasing fire activity, there is speculation that fire intensity and...
thumbnail
To determine if invasive annual grasses increased around energy developments after the construction phase, we calculated an invasives index using Landsat TM and ETM+ imagery for a 34-year time period (1985-2018) and assessed trends for 1,755 wind turbines (from the U.S. Wind Turbine Database) installed between 1988 and 2013 in the southern California desert. The index uses the maximum normalized difference vegetation index (NDVI) for early season greenness (January-June), and mean NDVI (July-October) for the later dry season. We estimated the relative cover of invasive annuals each year at turbine locations and control sites and tested for changes before and after each turbine was installed. These data were used...
This is the USGS Earth Resources and Science (EROS) Center catalog and repository space. This space primarily supports science projects by providing a place to organize and publicly release data that support science information products. The EROS Center studies land change and produces land change data products used by researchers, resource managers, and policy makers across the nation and around the world.
thumbnail
Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface-water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface-water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface-water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
These data products are preliminary burn severity assessments derived from data obtained from suitable imagery (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned...


map background search result map search result map USDA, National Agricultural Statistics Service, 2009 Cropland Data Layer Wyoming Evapotranspiration in the Upper Klamath Basin for October 2013 Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Data release for Wetlands inform how climate extremes influence surface water expansion and contraction Mapped fire perimeters from the Sky Island Mountains of US and Mexico: 1985-2011 BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2010) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (1999) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2005) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2004) BLM REA NWP 2011 FI C 2000 MTBS BLM REA CBR 2010 mtbs perims Clip CBR Data supporting Landsat time series assessment of invasive annual grasses following energy development Earth Resources Observation and Science Center (EROS) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2021 (ver. 5.0, August 2023) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 Evapotranspiration in the Upper Klamath Basin for October 2013 Mapped fire perimeters from the Sky Island Mountains of US and Mexico: 1985-2011 Data supporting Landsat time series assessment of invasive annual grasses following energy development BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2010) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (1999) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2005) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2004) USDA, National Agricultural Statistics Service, 2009 Cropland Data Layer Wyoming BLM REA CBR 2010 mtbs perims Clip CBR BLM REA NWP 2011 FI C 2000 MTBS Data release for Wetlands inform how climate extremes influence surface water expansion and contraction Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2021 (ver. 5.0, August 2023) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015)