Skip to main content
Advanced Search

Filters: Tags: Journal of Geophysical Research G: Biogeosciences (X)

50 results (252ms)   

View Results as: JSON ATOM CSV
thumbnail
The effects of prescription burning on watershed balances of major ions in mixed conifer forest were examined in a 16-year paired catchment study in Sequoia National Park, California. The objective was to determine whether fire-related changes in watershed balances persist as long as estimated low-end natural fire-return intervals (???10 years), and whether cumulative net export caused by fire could deplete nutrient stocks between successive fires. Inputs (wet + dry deposition) and outputs (stream export) of N, S, Cl-, HCO3-, Ca2+, Mg2+, Na+, K+, H+, and SiO2 were measured for 7 years preceding, and 9 years following, a prescribed burn of one of the catchments. After fire, runoff coefficients increased by 7% (in...
thumbnail
Loads and yields of dissolved and particulate nitrogen (N) and phosphorus (P) were measured and modeled at three locations on the Yukon River (YR) and on the Tanana and Porcupine Rivers in Alaska during 2001-2005. Total export of N and P upstream of Yukon Delta averaged 120 Gg N a-1 and 56 Gg P a-1, respectively, with 43.5% of total N (TN) as dissolved organic N, and 98% of total P (TP) as particulate phosphorus. Approximately half of the annual export of TN and TP occurred during spring. Hydrologic yields ofTN (5.6-13.3 mmol N m-2 a-1) and TP (0.8-9.0 mmol P m-2 a-1) were least in the Porcupine basin and greatest in the Tanana basin and were proportional to water yield. Comparison of current and historical dissolved...
thumbnail
Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification,...
thumbnail
[1] Permafrost melting is occurring in areas of the boreal forest region where large amounts of carbon (C) are stored in organic soils. We measured soil respiration, net CO2 flux, and net CH4 flux during May–September 2003 and March 2004 in a black spruce lowland in interior Alaska to better understand how permafrost thaw in poorly drained landscapes affects land‐atmosphere CO2 and CH4 exchange. Sites included peat soils underlain by permafrost at ∼0.4 m depth (permafrost plateau, PP), four thermokarst wetlands (TW) having no permafrost in the upper 2.2 m, and peat soils bordering the thermokarst wetlands having permafrost at ∼0.5 m depth (thermokarst edges, TE). Soil respiration rates were not significantly different...
thumbnail
Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45??N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important...
thumbnail
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics...
thumbnail
Over the past 50 years, Alaska has experienced a warming climate with longer growing seasons, increased potential evapotranspiration, and permafrost warming. Research from the Seward Peninsula and Kenai Peninsula has demonstrated a substantial landscape-level trend in the reduction of surface water and number of closed-basin ponds. We investigated whether this drying trend occurred at nine other regions throughout Alaska. One study region was from the Arctic Coastal Plain where depp permafrost occurs continuously across the landscape. The other eight study regions were from the boreal forest regions where discontinuous permafrost occurs. Mean annual precipitation across the study regions ranged from 100 to over...
thumbnail
Boreal soils are important to the global C cycle owing to large C stocks, repeated disturbance from fire, and the potential for permafrost thaw to expose previously stable, buried C. To evaluate the primary mechanisms responsible for both short- and long-term C accumulation in boreal soils, we developed a multi-isotope (12,14C) Soil C model with dynamic soil layers that develop through time as soil organic matter burns and reaccumulates. We then evaluated the mechanisms that control organic matter turnover in boreal regions including carbon input rates, substrate recalcitrance, soil moisture and temperature, and the presence of historical permafrost to assess the importance of these factors in boreal C accumulation....
thumbnail
Nitrate (NO3−) concentrations and dual isotopic composition (δ15N and δ18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO3− within this California estuary. We found the isotopic composition of NO3− was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end‐member mixing model to calculate the relative contribution of these two NO3− sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season...
thumbnail
Glaciers and rock glaciers supply water and bioavailable nutrients to headwater mountain lakes and streams across all regions of the American West. Here we present a comparative study of the metal, nutrient, and microbial characteristics of glacial and rock glacial influence on headwater ecosystems in three mountain ranges of the contiguous U.S.: The Cascade Mountains, Rocky Mountains, and Sierra Nevada. Several meltwater characteristics (water temperature, conductivity, pH, heavy metals, nutrients, complexity of dissolved organic matter (DOM), and bacterial richness and diversity) differed significantly between glacier and rock glacier meltwaters, while other characteristics (Ca2+, Fe3+, SiO2 concentrations, reactive...
thumbnail
Lignin phenols have proven to be powerful biomarkers in environmental studies; however, the complexity of lignin analysis limits the number of samples and thus spatial and temporal resolution in any given study. In contrast, spectrophotometric characterization of dissolved organic matter (DOM) is rapid, noninvasive, relatively inexpensive, requires small sample volumes, and can even be measured in situ to capture fine-scale temporal and spatial detail of DOM cycling. Here we present a series of cross-validated Partial Least Squares models that use fluorescence properties of DOM to explain up to 91% of lignin compositional and concentration variability in samples collected seasonally over 2 years in the Sacramento...
thumbnail
We examined soil organic C (OC) turnover and transport across the rainfall transition from a biotic, arid site to a largely abiotic, hyperarid site. With this transition, OC concentrations decrease, and C cycling slows precipitously, both in surface horizons and below ground. The concentration and isotopic character of soil OC across this transition reflect decreasing rates of inputs, decomposition, and downward transport. OC concentrations in the arid soil increase slightly with depth in the upper meter, but are generally low and variable (???0.05%; total inventory of 1.82 kg m-2); OC-??14C values decrease from modern (+7???) to very 14C-depleted (-966???) with depth; and OC-??13C values are variable (-23.7???...
thumbnail
Ongoing climate change is affecting the concentration, export (flux), and timing of dissolved organic carbon (DOC) exported to the Gulf of Maine (GoM) through changes in hydrologic regime. DOC export was calculated for water years 1950 through 2013 for 20 rivers and for water years 1930 through 2013 for 14 rivers draining to the GoM. DOC export was also estimated for the 21st century based on climate and hydrologic modeling in a previously published study. DOC export was calculated by using the regression model LOADEST to fit seasonally adjusted concentration discharge (C-Q) relations. Our results are an analysis of the sensitivity of DOC export to changes in hydrologic conditions over time since land cover and...
thumbnail
Freshwater lakes are an important component of the global carbon cycle through both organic carbon (OC) sequestration and carbon dioxide (CO 2) emission. Most lakes have a net annual loss of CO2 to the atmosphere and substantial current evidence suggests that biologic mineralization of allochthonous OC maintains this flux. Because net CO 2 flux to the atmosphere implies net mineralization of OC within the lake ecosystem, it is also commonly assumed that net annual CO2 emission indicates negative net ecosystem production (NEP). We explored the relationship between atmospheric CO2 emission and NEP in two lakes known to have contrasting hydrologie characteristics and net CO2 emission. We calculated NEP for calendar...
thumbnail
The mobilization of mercury and dissolved organic carbon (DOC) during snowmelt often accounts for a major fraction of the annual loads. We studied the role of hydrological connectivity of riparian wetlands and upland/wetland transition zones to surface waters on the mobilization of Hg and DOC in Fishing Brook, a headwater of the Adirondack Mountains, New York. Stream water total mercury (THg) concentrations varied strongly (mean = 2.25 ?? 0.5 ng L -1), and the two snowmelt seasons contributed 40% (2007) and 48% (2008) of the annual load. Methyl mercury (MeHg) concentrations ranged up to 0.26 ng L-1, and showed an inverse log relationship with discharge. TOPMODEL-simulated saturated area corresponded well with wetland...
thumbnail
Conventional Q10 soil organic matter decomposition models and more complex microbial models are available for making projections of future soil carbon dynamics. However, it is unclear (1) how well the conceptually different approaches can simulate observed decomposition and (2) to what extent the trajectories of long-term simulations differ when using the different approaches. In this study, we compared three structurally different soil carbon (C) decomposition models (one Q10 and two microbial models of different complexity), each with a one- and two-horizon version. The models were calibrated and validated using 4 years of measurements of heterotrophic soil CO2 efflux from trenched plots in a Dahurian larch (Larix...
thumbnail
We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across...
thumbnail
We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial...
thumbnail
Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid...
thumbnail
Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season....