Skip to main content
Advanced Search

Filters: Tags: Journal of Geophysical Research E: Planets (X) > partyWithName: American Geophysical Union (X)

104 results (352ms)   

View Results as: JSON ATOM CSV
thumbnail
The Microscopic Imager (MI) on the Mars Exploration Rover Opportunity has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Meridiani Planum landing site. Designed to simulate a geologist's hand lens, the MI is mounted on Opportunity's instrument arm and can resolve objects 0.1 mm across or larger. This paper provides an overview of MI operations, data calibration, and analysis of MI data returned during the first 900 sols (Mars days) of the Opportunity landed mission. Analyses of Opportunity MI data have helped to resolve major questions about the origin of observed textures and features. These...
thumbnail
We investigate the spectral reflectance properties of channels and mountain ranges on Titan using data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS) obtained during the T9 encounter (26 December 2005). We identify the location of channels and mountains using synthetic aperture radar maps obtained from Cassini's RADAR instrument during the T13 (30 April 2006) flyby. Channels are evident even in VIMS imaging with spatial resolution coarser than the channel size. The channels share spectral characteristics with Titan's dark blue terrain (e.g., the Huygens landing site) that is consistent with an enhancement in water ice content relative to the rest of Titan. We use this fact to measure widths of ???1...
thumbnail
Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover's exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest...
thumbnail
Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively,...
thumbnail
We analyzed narrow‐angle Mars Orbiter Camera (MOC‐NA) images to produce high‐resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars‐orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3‐pixel (typically 10 m) horizontal resolution, vertical precision consistent with ∼0.22 pixel matching errors (typically a few meters), and slope errors of 1–3°. These DEMs are controlled...
thumbnail
Most of the soil-like materials at the Pathfinder landing site behave like moderately dense soils on Earth with friction angles near 34°-39° and are called cloddy deposits. Cloddy deposits appear to be poorly sorted with dust-sized to granule-sized mineral or rock grains; they may contain pebbles, small rock fragments, and clods. Thin deposits of porous, compressible drifts with friction angles near 26°-28° are also present. Drifts are fine grained. Cohesions of both types of deposits are small. There may be indurated soil-like deposits and/or coated or crusted rocks. Cloddy deposits may be fluvial sediments of the Ares-Tiu floods, but other origins, such as ejecta from nearby impact craters, should be considered....
thumbnail
We catalog 143 Ionian mountains (montes) and mountain‐like features (mensae, tholi, plana, and small peaks) in order to investigate orogenic tectonism on Io. From this comprehensive list, we select 96 mountains for which there are sufficient coverage and resolution to discern spatial relationships with surrounding geologic features. Three of the 96 mountains are probably volcanoes, 92 appear to be tectonic massifs, and 1 is ambiguous. Of the 92 tectonic mountains, 38 abut paterae (volcanic or volcano‐tectonic craters with irregular or scalloped margins). This juxtaposition is unlikely to be a coincidence as the probability of it occurring by chance is ∼0.1%. We propose instead that orogenic faults may act as conduits...
thumbnail
Congruous with earlier work, Martian soil along the Spirit Rover's traverse at Gusev crater can be divided into three broad groups by size: fines (<150 μm), sand, and a mix of various grain sizes. The key chemical observation is greater homogeneity in fines relative to the other two, consistent with regional‐ and global‐scale sampling of chemical compositions by finer particle sizes. The mix class is generally more heterogeneous as are samples from the Columbia Hills within each class. Variation in the trace element Ni is consistent with a CI contribution not exceeding 3%, while that of Ti is compatible with Fe‐Ti oxide enrichment not exceeding 3%. Physical mixing models are poorly supported. Among many potential...
thumbnail
In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid‐water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote‐sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras...
thumbnail
Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245–280 J m−2 s−1/2 K−1 (5.9–6.7×10−3 cal cm−2 s−1/2 K−1) for the Proctor dune field and 25–150 J m−2 s−1/2 K−1 (0.6–3.6×10−3cal cm−2 s−1/2 K−1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near‐infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent...
thumbnail
The Imager for Mars Pathfinder (IMP) was used to observe several objects during the Martian night. The satellites, Phobos and Deimos, were observed on two occasions each, through the IMP geological filters covering the wavelength range 440 nm to 1 μm. The observations were converted to geometric albedo using triaxial ellipsoid models of the satellites and phase functions derived from Viking Orbiter images. The spectral slopes over the full wavelength range were 7.9(±0.5)% (100 nm)−1 and 9.6(±0.6)% (100 nm)−1, respectively, referenced to 600 nm. In the Deimos spectra, some evidence for decreased reddening toward the trailing hemisphere was found. The geometric albedoes of Phobos and Deimos were found to be 0.065...
thumbnail
One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs...
thumbnail
Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences...
thumbnail
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines,...
thumbnail
The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one...
thumbnail
To ensure a successful touchdown and subsequent surface operations, the Mars Exploration Program 2007 Phoenix Lander must land within 65° to 72° north latitude, at an elevation less than −3.5 km. The landing site must have relatively low wind velocities and rock and slope distributions similar to or more benign than those found at the Viking Lander 2 site. Also, the site must have a soil cover of at least several centimeters over ice or icy soil to meet science objectives of evaluating the environmental and habitability implications of past and current near‐polar environments. The most challenging aspects of site selection were the extensive rock fields associated with crater rims and ejecta deposits and the centers...
thumbnail
The ∼750 m diameter and ∼75 m deep Victoria crater in Meridiani Planum, Mars, is a degraded primary impact structure retaining a ∼5 m raised rim consisting of 1–2 m of uplifted rocks overlain by ∼3 m of ejecta at the rim crest. The rim is 120–220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500–750 m across indicates that the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by ∼150 m and infilled by ∼50 m of sediments. Eolian processes are responsible for most crater modification, but lesser mass wasting or gully activity contributions...
thumbnail
The Microscopic Imager (MI) on the Mars Exploration Rover Spirit has returned images of Mars with higher resolution than any previous camera system, allowing detailed petrographic and sedimentological studies of the rocks and soils at the Gusev landing site. Designed to simulate a geologist's hand lens, the MI is mounted on Spirit's instrument arm and can resolve objects 0.1 mm in size or larger. This paper provides an overview of MI operations, data calibration, processing, and analysis of MI data returned during the first 450 sols (Mars days) of the Spirit landed mission. The primary goal of this paper is to facilitate further analyses of MI data by summarizing the methods used to acquire and process the data,...
thumbnail
Each Mars Exploration Rover carries an integrated suite of scientific instruments and tools called the Athena science payload. The primary objective of the Athena science investigation is to explore two sites on the Martian surface where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. The remote sensing portion of the payload uses a mast called the Pancam Mast Assembly (PMA) that provides pointing for two instruments: the Panoramic Camera (Pancam), and the Miniature Thermal Emission Spectrometer (Mini‐TES). Pancam provides high‐resolution, color, stereo imaging, while Mini‐TES provides spectral cubes at mid‐infrared wavelengths. For in‐situ...
thumbnail
The entire surface of the planet Venus is being mapped at global and regional scales (1:50,000,000 through 1:1,500,000) with synthetic aperture radar (SAR), radar altimeter, and radiometer measurements of physical properties from the Magellan spacecraft. The mapping includes SAR image mosaics, shaded relief maps, and topographic contour overlays made from altimetry data and by radargrammetric methods. Methods used include new techniques of radar image processing that became operational as a result of the Magellan mission. The area being mapped (at a resolution of 75 m/pixel) is roughly equivalent to that of Earth, including seafloors. The mapping is designed to support geologic and geophysical investigations.