Skip to main content
Advanced Search

Filters: Tags: Hydrous pyrolysis (X)

7 results (439ms)   

Filters
Date Range
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Geological models for petroleum generation suggest thermal conversion of oil-prone sedimentary organic matter in the presence of water promotes increased liquid saturate yield, whereas absence of water causes formation of an aromatic, cross-linked solid bitumen residue. To test the influence of exchangeable hydrogen from water, organic-rich (22 wt.% total organic carbon, TOC) mudrock samples from the Eocene lacustrine Green River Mahogany zone oil shale were pyrolyzed under hydrous and anhydrous conditions at temperatures between 300 and 370°C for 72 hrs. Petrographic approaches including optical microscopy, reflectance, Raman spectroscopy, and scanning electron and transmission electron microscopy, supplemented...
thumbnail
The dataset covers X-ray diffraction (XRD) applied for mineral determination in shales from the Utica, Excello, Niobrara, and Monterey formations. The XRD was performed prior to modified Rock-Eval pyrolysis, reflectance, organic petrology, and Fourier-transform infrared spectroscopy (FTIR) being employed to analyze geochemical properties; gas adsorption (CO2 and N2) was used to characterize pore structures.
thumbnail
The most commonly used parameter for thermal maturity calibration in basin modelling is mean random vitrinite reflectance (Ro). However, Ro suppression, or lower than expected Ro, has been noted in samples containing a high proportion of liptinite macerals. This has been empirically demonstrated using hydrous pyrolysis experiments of artificial source rock containing various proportions of thermally immature Wyodak-Anderson coal and liptinite-rich kerogen from the Parachute Creek Member of the Green River Formation. Analysis of samples pyrolyzed at 330°C for 72 h demonstrates that the Ro values of both vitrinite and solid bitumen are suppressed, where the degree of suppression increases with increasing amounts of...
thumbnail
Raman spectroscopy was studied as a thermal maturity probe in a series of Upper Devonian Ohio Shale samples from the Appalachian Basin spanning from immature to dry gas conditions. Raman spectroscopy also was applied to samples spanning a similar thermal range created from 72-hour hydrous pyrolysis (HP) experiments of the Ohio Shale at temperatures from 300 to 360°C and isothermal HP experiments lasting up to 100 days of similar Devonian-Mississippian New Albany Shale. Raman spectra were treated by an automated evaluation software based on iterative and simultaneous modeling of signal and baseline functions to decrease subjectivity. Spectra show robust correlation to measured solid bitumen reflectance (BRo) values...
thumbnail
The molecular composition of petroliferous organic matter and its composition evolution throughout thermal advance are key to understanding and insight into petroleum generation. This information is critical for comprehending hydrocarbon resources in unconventional reservoirs, as source rock organic matter is highly dispersed, in contact with the surrounding mineral matrix, and may be present as multiple organic matter types. Here, a combination of Raman spectroscopy and optical microscopy approaches was applied to a marginally mature (vitrinite reflectance ~0.5%) sample of the Late Cretaceous Boquillas Shale before and after hydrous pyrolysis (HP) at 300 °C and 330 °C for 72 hours. This experimental design allowed...
thumbnail
This study evaluated carbonaceous shales proximal to coal measures and coal samples via isothermal hydrous pyrolysis (HP) to compare differences in the maturation pathways of vitrinite in different matrices and with different starting aromaticity. Sample residues were analysed via vitrinite reflectance (VRo), geochemical screening tests (organic carbon and programmed temperature pyrolysis), and infrared spectroscopy. The study included samples from Indian and North American basins, to observe differences in vitrinite evolution with respect to enclosing mineral matrix, starting degree of aromaticity, organic matter types, stratigraphic age, and depositional environment. Tmax, production index (PI), and VRo show intuitive...
thumbnail
Mean random vitrinite reflectance (Ro) is the most widely accepted method to determine thermal maturity of coal and other sedimentary rocks. However, oil-immersion Ro of polished rock or kerogen samples is commonly lower than Ro values measured in samples from adjacent vitrinite-rich coals that have undergone the same level of thermal stress. So-called suppressed Ro values have also been observed in hydrous pyrolysis experiments designed to simulate petroleum formation. Various hypotheses to explain Ro suppression, such as sorption of products generated from liptinite during maturation, diagenetic formation of perhydrous vitrinite or overpressure, remain controversial. To experimentally test for suppression of vitrinite...


    map background search result map search result map Data Release for Application of Raman spectroscopy as thermal maturity probe in shale petroleum systems: insights from natural and artificial maturation series (2018) Data release for mean random reflectance for products of hydrous pyrolysis experiments on artificial rock mixtures of humic Wyodak-Anderson coal (2018) XRD data from study on the impact of thermal maturity on shale microstructures using hydrous pyrolysis (2018) Reflectance, Raman band separation and Mean multivariant curve resolution (MCR) in organic matter in Boquillas Shale Solid bitumen and vitrinite reflectance suppression explored using hydrous pyrolysis of artificial source rock (2021) TOC, Reflectance and Raman Data from Eocene Green River Mahogany zone Reflectance, Raman band separation and Mean multivariant curve resolution (MCR) in organic matter in Boquillas Shale Solid bitumen and vitrinite reflectance suppression explored using hydrous pyrolysis of artificial source rock (2021) TOC, Reflectance and Raman Data from Eocene Green River Mahogany zone Data release for mean random reflectance for products of hydrous pyrolysis experiments on artificial rock mixtures of humic Wyodak-Anderson coal (2018) Data Release for Application of Raman spectroscopy as thermal maturity probe in shale petroleum systems: insights from natural and artificial maturation series (2018) XRD data from study on the impact of thermal maturity on shale microstructures using hydrous pyrolysis (2018)