Skip to main content
Advanced Search

Filters: Tags: Humboldt Bay (X)

16 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set includes: 1) A shapefile of the Humboldt Bay Eel River (HBER) 13 sub watersheds, 2) A shape file of the streamflow gages used in calibration, and 3) Daily Basin Characterization Model (BCM) model climate inputs (minimum and maximum air temperature, precipitation, and potential evapotranspiration) and outputs of recharge and runoff for the year 2010 used to develop streamflow estimates at 12 gage locations.
thumbnail
Model archive summary (MAS) describing the development of a suspended-sediment concentration (SSC) surrogate regression model for the Hookton Slough near Loleta, CA water quality station (USGS site ID# 404038124131801). A continuous 15-minute SSC record was computed using this regression model for the period of record (03-04-2016 to 09-10-2019). The computed SSC record can be found on NWIS Web at https://waterdata.usgs.gov/ca/nwis/uv?site_no=404038124131801. The SSC record was used to assess ambient SSC conditions, the availability of suspended sediment to support surface deposition and elevation gain in adjacent salt marshes, and to characterize salt marsh resiliency to climate change impacts in Humboldt Bay, CA.
thumbnail
We performed bathymetric surveys using a shallow-water echo-sounding system (Takekawa et al., 2010, Brand et al., 2012) comprised of an acoustic profiler (Navisound 210; Reson, Inc., Slangerup, Denmark), Leica RTK GPS Viva rover, and laptop computer mounted on a shallow-draft, portable flat-bottom boat (Bass Hunter, Cabelas, Sidney, NE; Figure 7). The RTK GPS obtained high resolution elevations of the water surface (reported precision 10 cm water depth. We recorded twenty depth readings and one GPS location each second along transects spaced 100 m apart perpendicular to the nearby salt marsh. We calibrated the system before use with a bar-check plate and adjusted the sound velocity for salinity and temperature differences....
thumbnail
This data release includes monitoring data collected by the U.S. Geological Survey (USGS) Humboldt Bay Water Quality and Salt Marsh Monitoring Project. The datasets include continuous water levels collected at a 6-minute timestep collected in two study marshes (Mad River and Hookton). Surface deposition, elevation changes and carbon storage (in marsh edge environments) measured in five USGS study marshes (Mad River, Manila, Jacoby, White and Hookton). The monitoring data presented in this data release represent fundamental datasets needed to manage blue carbon stocks, assess marsh vulnerability, inform SLR adaptation planning, and build coastal resiliency to climate change in Humboldt Bay, CA Additional documentaton...
This project applied sea-level rise (SLR) modeling approaches along the Pacific coast tidal gradient at a parcel scale through improved data collection tools and collaboration relevant to land managers. At selected salt marsh parcels in both the North Pacific and California LCCs, data collection techniques were employed to assess detailed baseline habitat elevations; tidal ranges, microclimate, and extreme weather events; sediment supply sources; vegetation community composition; and vertebrate population indices. The design provides resource managers with information on the value of different datasets and methods including their uncertainty, as well as determines their usefulness in climate change adaptation planning...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2011, Academics & scientific researchers, Alaska, British Columbia, CA-2, All tags...
thumbnail
contains an excel format and shapefile format of the vegetation survey data collected within Humboldt Bay during the summer of 2012.We recorded vegetation data within a 0.25 m2 quadrat concurrently with elevation surveys. Data were taken at every fourth (25%) elevation point (n=740 quadrats; Fig. 4). We measured height (mean and maximum, measured within 0.05 m) and visually estimated percent cover for each species within each quadrat. This allowed us to develop a relationship between plant species, elevation and tidal datum across all sites. We also characterized the most common species, which were defined as those found at>10 % of the plots. Plant species frequency was plotted relative to MHW. This comprehensive...
The Humboldt Bay-Eel River region may experience the highest rate of relative sea level rise increase along the West Coast. The Project will engage stakeholders to discuss community and science needs for planning and implementing adaptation measures to sea level rise. The Project is a critical step in developing an ecosystem based-management (EBM) approach to guide the protection, management, enhancement, adaptation, restoration, and possible redistribution of Humboldt Bay-Eel River Delta habitats under future climate scenarios. This process will be informed by the best-available science, the needs of Humboldt Bay-Eel River Delta agricultural producers, and other community members.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2015, Academics & scientific researchers, Academics & scientific researchers, CA-02, CA-2, All tags...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
Elevation change and surface deposition are important drivers of salt marsh ecological processes and represent two of the fundamental variables for determining marsh resilience to sea-level rise. Surface Elevation Tables with Marker Horizons (SET-MH) were used to measure plot-scale elevation change (SETs) and surface deposition (MHs) in five USGS study marshes located in Humboldt Bay, CA. SET-MHs were installed in 2014 (Mad River marsh and Manila marsh) and in 2015 (Jacoby marsh, White marsh, and Hookton marsh) and were measured during quarterly site visits. The SET-MH network includes two SETs and six MHs in each of the five study marshes. Measuring elevation change at the two SETs in each study marsh involves...
thumbnail
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats. To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Bolinas Lagoon, CA, CASC, California, All tags...
thumbnail
The overarching goal of this research was to use site-specific data to develop local and regionally-applicable climate change models that inform management of tidal wetlands along the Pacific Northwest coast. The overarching questions were: (1) how do tidal marsh site characteristics vary across estuaries, and (2) does tidal marsh susceptibility to sea-level rise (SLR) vary along a latitudinal gradient and between estuaries? These questions are addressed in this data collection with three specific objectives: (1) measure topographical and ecological characteristics (e.g., elevation, tidal range, vegetation composition) for tidal marsh and intertidal mudflats, (2) model SLR vulnerability of these habitats, and (3)...
Categories: Data; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Bolinas Lagoon, CA, CASC, California, All tags...
thumbnail
Water levels are an important driver of salt marsh processes. In 2016, pressure-transducing data loggers (LT Edge Model 3001, Solinst and Hobo Model U-20-001-01-Ti) and barometric-pressure loggers (Model 3001, Solinst) were deployed in two USGS study marshes (Mad River marsh and Hookton marsh) located in Humboldt Bay, CA. The loggers were placed as low in the tide frame as possible, while still maintaining access to the sensors at low tide. Sensors captured high tide water levels; but sensor elevation was too high to capture low tide water levels. Continuous measurements were collected on a 6-minute timestep. Sensor elevations were surveyed using Real-Time Kinematic GPS (Leica GS-15, Leica Geosystems, Norcross,...
thumbnail
Our study focused on seven marsh sites distributed throughout Humboldt Bay and largely withinrefuge boundaries; Hookton Slough Island, Salmon Creek marsh, White Slough marsh, EurekaSlough marsh, Jacoby Creek marsh, Mad River Slough marsh, and Manila marsh. These marshesprovide important habitat for marsh-dependent species, such as Humboldt Bay Owl’s Clover(Castilleja ambigua), Western Snowy Plover (Charadrius alexandrinus nivosus), and Steelhead(Oncorhynchus mykiss).
thumbnail
Model archive summary (MAS) describing the development of a suspended-sediment concentration (SSC) surrogate regression model for the Mad River Slough near Arcata, CA water quality station (USGS site ID# 405219124085601). A 15-minute SSC record was computed using this regression model for the period of record (03-04-2016 to 09-10-2019). The computed SSC record can be found on NWIS Web at https://waterdata.usgs.gov/nwis/inventory/?site_no=405219124085601&agency_cd=USGS. The SSC record was used to assess ambient SSC conditions, the availability of suspended sediment to support surface deposition and elevation gain in adjacent salt marshes, and to characterize salt marsh resiliency to climate change impacts in Humboldt...
thumbnail
Blue carbon storage in coastal vegetated habitats is an important component of the global carbon cycle. In 2018, shallow sediment cores were collected in five USGS study marshes located in Humboldt Bay, CA. The cores were collected within 2 m of the marsh edge to characterize carbon storage in areas susceptible to marsh edge erosion Two sediment cores were collected in each of the five study marshes (Mad River, Manila, Jacoby, White, Hookton) using an Ejkelkamp peat sampler (52 mm diameter). The sampler was pounded in the sediments with a heavy plastic mallet. This method produces little to no compaction because once inserted, the corer is rotated 180°, and a sample is collected adjacent to where it was driven into...
thumbnail
Coastal resource managers are faced with many challenges and uncertainties in planning adaptive strategies for conserving estuarine habitats with climate change. To plan and manage for future scenarios, managers need access to data, models, and training on the best-available science. To address this need, the USGS Western Ecological Research Center has worked with federal, Tribal, state, and local partners to establish a network of study sites in 17 estuaries along the Pacific Coast, examining the climate change effects on tidal wetlands with high-quality local data, downscaled models, and projected storm effects. Study sites include ten USFWS National Wildlife Refuges and four NOAA National Estuarine Research Reserves.


    map background search result map search result map Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Humboldt Bay NWR Sea-level rise modeling Assessing Marsh response from sea-level rise applying local site conditions:Humboldt Bay National Wildlife Refuge - Final Report Coastal Ecosystem Response to Climate Change - Fact sheet Humboldt Marsh Vegetation Developing Shared Strategies for Sea-level Rise Adaptation in Working Lands of Humboldt Bay and the Eel River Delta Humboldt, California: Tidal Marsh Digital Elevation Model Humboldt, California: Tidal Marsh Bathymetry Digital Elevation Model Sea-level rise projections for and observational data of tidal marshes along the California coast Daily Basin Characterization Model (BCM) archive for Humboldt Bay/Eel River Model Archive Summary for a Suspended-Sediment Concentration Surrogate Regression Model for Station 404038124131801; Hookton Slough near Loleta, CA Model Archive Summary for a Suspended-Sediment Concentration Surrogate Regression Model for Station 405219124085601; Mad River Slough near Arcata, CA Salt marsh monitoring during water years 2013 to 2019, Humboldt Bay, CA – water levels, surface deposition, elevation change, and carbon storage Carbon storage in the edge environments of five salt marshes, Humboldt Bay, CA, 2018 Surface deposition and elevation change in five salt marshes, Humboldt Bay, CA, 2014-2019 Water level and barometric pressure measurements in two salt marshes, Humboldt Bay, CA, 2016-2019 Humboldt Marsh Vegetation Humboldt Bay NWR Sea-level rise modeling Carbon storage in the edge environments of five salt marshes, Humboldt Bay, CA, 2018 Surface deposition and elevation change in five salt marshes, Humboldt Bay, CA, 2014-2019 Water level and barometric pressure measurements in two salt marshes, Humboldt Bay, CA, 2016-2019 Salt marsh monitoring during water years 2013 to 2019, Humboldt Bay, CA – water levels, surface deposition, elevation change, and carbon storage Assessing Marsh response from sea-level rise applying local site conditions:Humboldt Bay National Wildlife Refuge - Final Report Coastal Ecosystem Response to Climate Change - Fact sheet Developing Shared Strategies for Sea-level Rise Adaptation in Working Lands of Humboldt Bay and the Eel River Delta Daily Basin Characterization Model (BCM) archive for Humboldt Bay/Eel River Sea-level rise projections for and observational data of tidal marshes along the California coast Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1