Skip to main content
Advanced Search

Filters: Tags: Ground water (X) > partyWithName: Virginia L McGuire (X)

13 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, 2013 to 2015. This digital dataset was created using water-level measurements from 7,529 wells measured in both 2013 and 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the supplemental water-level measurements from 1,897 wells located in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, or Texas and measured in various time periods, which were used to historical water-level change values for predevelopment to 2011 to 2014 and approximate water-level change values from predevelopment to 2015 to substantiate the map of water-level changes, predevelopment...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2015. This digital dataset was created using water-level measurements from 3,092 wells measured in both the predevelopment period (about 1950) and in 2015, the latest available static water level measured in 2011 to 2014 from 72 wells in New Mexico and Wyoming, and using other published information...
thumbnail
This USGS data release consists of two geospatial raster datasets and three geospatial vector data sets of water-level data. The data sets include a raster (A1) representing water-level change from predevelopment (about 1950) to 2015; the primary vector dataset (A2) of water-level-change data of static or near-static water levels in wells measured in predevelopment and 2015 (for wells in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, and Texas) and in wells measured in predevelopment and the latest available static or near-static water level from 2011 to 2015 (for wells in New Mexico and Wyoming), a supplemental vector dataset (A3) of water-level data used to manually substantiate the raster of water-level...
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set contains the water-level measurements from 3,092 wells measured in both predevelopment (about 1950) and 2015 and from 72 wells, which are located in New Mexico and Wyoming and were measured in predevelopment and at least one time from 2011 to 2014. These water-level measurements were used to map water-level changes, predevelopment (about 1950) to 2015. The map was reviewed for consistency...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the water-level measurements from 7,526 wells measured in both 2013 and 2015, which was used to map water-level changes, 2013 to 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.


    map background search result map search result map Data used to map water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 and 2013 to 2015 (B2) Water-level change data used to map water-level changes in the High Plains aquifer, 2013 to 2015 (A2) Water-level change data used to map water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 (A3) Supplemental water-level change data used to substantiate the map of water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 (B1) Spatial data set of mapped water-level changes in the High Plains aquifer, 2013 to 2015 (A1) Spatial data set of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 Data associated with potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016 (a) Groundwater altitude data, from monitoring-networks wells, considered for the potentiometric surface map, Mississippi River Valley alluvial aquifer, spring 2016 (b) Groundwater altitude data, from driller-measured wells, considered for the potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016 (c) Surface-water altitude data, from streamgages, considered for the potentiometric surface map, Mississippi River Valley alluvial aquifer, spring 2016 (d) Spatial data set of the potentiometric surface contours, Mississippi River Valley alluvial aquifer, spring 2016, in feet (e1) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in feet (e2) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in meters (b) Groundwater altitude data, from driller-measured wells, considered for the potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016 Data associated with potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016 (a) Groundwater altitude data, from monitoring-networks wells, considered for the potentiometric surface map, Mississippi River Valley alluvial aquifer, spring 2016 (c) Surface-water altitude data, from streamgages, considered for the potentiometric surface map, Mississippi River Valley alluvial aquifer, spring 2016 (d) Spatial data set of the potentiometric surface contours, Mississippi River Valley alluvial aquifer, spring 2016, in feet (e1) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in feet (e2) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in meters (A3) Supplemental water-level change data used to substantiate the map of water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 (B2) Water-level change data used to map water-level changes in the High Plains aquifer, 2013 to 2015 (A2) Water-level change data used to map water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 Data used to map water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 and 2013 to 2015 (B1) Spatial data set of mapped water-level changes in the High Plains aquifer, 2013 to 2015 (A1) Spatial data set of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015