Skip to main content
Advanced Search

Filters: Tags: Great South Bay (X)

20 results (54ms)   

View Results as: JSON ATOM CSV
thumbnail
This data provides an estimated raster surface of dissolved oxygen values across a region covered by an August 23, 2016 AUV survey. The raster was generated by using a natural neighbors interplator within a GIS on the empirical data set. This interpolator was chosen due to the non-normal distribution observed among the data, and its ability to produce smoother approximations than alternative interpolation methods. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the interpolated dissolved oxygen surface, an xml file which contains metadata, and a layer file which can be used to import the layer's symbology.
thumbnail
This data set contains shoreline rate of change statistics for New York State coastal wetlands. Analysis was performed using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0, an extension for ArcMap. A reference baseline was used as the originating point for orthogonal transects cast by the DSAS software. The transects intersect each polyline vector shoreline establishing intersection measurement points, which were then used to calculate the rates of change. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines...
thumbnail
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate...
thumbnail
This data provides an estimated raster surface of dissolved oxygen values across a region covered by an August 26, 2016 AUV survey. The raster was generated by using a natural neighbors interplator within a GIS on the empirical data set. This interpolator was chosen due to the non-normal distribution observed among the data, and its ability to produce smoother approximations than alternative interpolation methods. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the interpolated dissolved oxygen surface, an xml file which contains metadata, and a layer file which can be used to import the layer's symbology.
thumbnail
This data set provides locations and values of water quality parameters from a survey conducted on August 24, 2016 using an Autonomous Underwater Vehicle (AUV) in Nicoll Bay, NY. During the August 24 survey, 17,808 observations of water quality parameters were made. Parameters collected include dissolved oxygen, pH, water temperature, specific conductance, and salinity. Data was collected in approximately east-west transects by the AUV, with the northern-most transects made first. Data was collected between the hours of 1 am and 5 am to obtain minimum DO values in the daily cycle. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the observation...
thumbnail
This data set contains rate of shoreline change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, presented here, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, determined by fitting a least-squares regression line to all shoreline...
thumbnail
This dataset provides locations and values of water quality parameters from a four-day survey conducted between August 23, 2016 and August 26, 2016 using an Autonomous Underwater Vehicle (AUV) in Great South Bay, New York. Measured parameters include bottom dissolved oxygen (DO), salinity, specific conductance, water temperature, and pH. During the four day period, data was collected along 15 transects of the Great South Bay, totaling 60,480 observation points. From these point data, rasters showing the spatial distribution of bottom dissolved oxygen were generated using an interpolator in a GIS. A unique raster is provided for each day of the survey. All data files for download are available within 'Child...
thumbnail
Groundwater data were collected in the spring and fall of 2008 from three sites representing different geological settings and biogeochemical conditions within the surficial glacial aquifer of Long Island, NY. Investigations were designed to examine the extent to which average vadose zone thickness in contributing watersheds controlled biogeochemical conditions and processes, including dissolved oxygen concentration (DO), oxidation-reduction potential (Eh), dissolved organic carbon concentration (DOC), and microbial dinitrogen (N2) production. Greatest N2 production was observed at the south shore of Long Island, which is characterized by a thin vadose zone, low DO and Eh, and relatively high DOC. Limited N2 production...
thumbnail
This data provides an estimated raster surface of dissolved oxygen values across a region covered by an August 24, 2016 AUV survey. The raster was generated by using a natural neighbors interplator within a GIS on the empirical data set. This interpolator was chosen due to the non-normal distribution observed among the data, and its ability to produce smoother approximations than alternative interpolation methods. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the interpolated dissolved oxygen surface, an xml file which contains metadata, and a layer file which can be used to import the layer's symbology
thumbnail
The salt marsh complex of Fire Island National Seashore (FIIS) and central Great South Bay was delineated to smaller, conceptual marsh units by geoprocessing of surface elevation data. Flow accumulation based on the relative elevation of each location is used to determine the ridge lines that separate each marsh unit while the surface slope is used to automatically assign each unit a drainage point, where water is expected to drain through. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and central Great South...
thumbnail
Biomass production is positively correlated with mean tidal range in salt marshes along the Atlantic coast of the United States of America. Recent studies support the idea that enhanced stability of the marshes can be attributed to increased vegetative growth due to increased tidal range. This dataset displays the spatial variation of mean tidal range (i.e. Mean Range of Tides, MN) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, based on conceptual marsh units defined by Defne and Ganju (2018). MN was based on the calculated difference in height between mean high water (MHW) and mean low water (MLW) using the VDatum (v3.5) database ( http://vdatum.noaa.gov/ ). Through scientific...
thumbnail
Elevation distribution in the Fire Island National Seashore and Central Great South Bay salt marsh complex is given in terms of mean elevation of conceptual marsh units defined by Defne and Ganju (2018). The elevation data is based on the 1-meter resolution Coastal National Elevation Database (CoNED). Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service...
thumbnail
This data set provides locations and values of water quality parameters from a survey conducted on August 25, 2016 using an Autonomous Underwater Vehicle (AUV) in Nicoll Bay, NY. During the August 25 survey, 12,275 observations of water quality parameters were made. Parameters collected include dissolved oxygen, pH, water temperature, specific conductance, and salinity. Data was collected in approximately east-west transects by the AUV, with the northern-most transects made first. Data was collected between the hours of 1 am and 5 am to obtain minimum DO values in the daily cycle. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the observation...
thumbnail
This data set displays intersection points used to compute rate of change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, determined by fitting a least-squares regression line to...
thumbnail
This data set provides locations and values of water quality paramters from a survey conducted on August 26, 2016 using an Autonomous Underwater Vehicle (AUV) in Patchogue Bay, NY. During the August 26 survey, 16,487 observations of water quality parameters were made. Parameters collected include dissolved oxygen, pH, water temperature, specific conductance, and salinity. Data was collected in approximately east-west transects by the AUV, with the northern-most transects made first. Data was collected between the hours of 1 am and 5 am to obtain minimum DO values in the daily cycle. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the observation...
thumbnail
This data provides an estimated raster surface of dissolved oxygen values across a region covered by an August 25, 2016 AUV survey. The raster was generated by using a natural neighbors interplator within a GIS on the empirical data set. This interpolator was chosen due to the non-normal distribution observed among the data, and its ability to produce smoother approximations than alternative interpolation methods. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the interpolated dissolved oxygen surface, an xml file which contains metadata, and a layer file which can be used to import the layer's symbology
thumbnail
This dataset includes New York State historical shoreline positions represented as digital vector polylines from 1880 to 2015. Shorelines were compiled from topographic survey sheets from the National Oceanic and Atmospheric Administration (NOAA). Historical shoreline positions can be used to assess the movement of shorelines through time. Rates of shoreline change were calculated in ArcMap 10.5.1 using the Digital Shoreline Analysis System (DSAS) version 5.0. DSAS uses a measurement baseline method to calculate rate of change statistics. Transects are cast from the reference baseline to intersect each shoreline, establishing measurement points used to calculate shoreline change rates. For wetland shorelines these...
thumbnail
This data set displays baselines used to calculate shoreline rate of change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0, and polyline vector historical shorelines from the National Oceanic and Atmospheric Administration (NOAA) . The baselines used in the analysis serve as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing intersection measurement points, which were then used to calculate the rates. U.S. Fish and Wildlife National Wetland Inventory polygon vector data provided extents of coastal...
thumbnail
This data set provides locations and values of water quality parametersters from a survey conducted on August 23, 2016 using an Autonomous Underwater Vehicle (AUV) in Nicoll Bay, NY. During the August 23 survey, 13,910 observations of water quality parameters were made. Parameters collected include dissolved oxygen, pH, water temperature, specific conductance, and salinity. Data was collected in approximately east-west transects by the AUV, with the northern-most transects made first. Data was collected between the hours of 1 am and 5 am to obtain minimum DO values in the daily cycle. There are three files available for download in the 'Attached Files' section below. There is a zip file which contains the observation...
thumbnail
This data set contains rate of shoreline change statistics for New York State coastal wetlands. Analysis was performed in ArcMap 10.5.1 using historical vector shoreline data from the National Oceanic and Atmospheric Administration (NOAA). Rate of change statistics were calculated using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines were available. Linear regression rates, presented here, were determined by fitting a least-squares regression line to...


    map background search result map search result map Geospatial datasets of AUV observations including bottom dissolved oxygen in Great South Bay, Long Island, New York, August 2016 Coastal Groundwater Chemical Data from the North and South Shores of Long Island, New York August 23, 2016 AUV Survey - Dissolved Oxygen Surface August 23, 2016 AUV Survey - Observation Point Data August 24, 2016 AUV Survey - Dissolved Oxygen Surface August 25, 2016 AUV Survey - Dissolved Oxygen Surface August 26, 2016 AUV Survey - Dissolved Oxygen Surface August 24, 2016 AUV Survey - Observation Point Data August 25, 2016 AUV Survey  - Observation Point Data August 26, 2016 AUV Survey - Observation Point Data Rate of shoreline change statistics for New York State coastal wetlands End point rate of shoreline change statistics for New York State coastal wetlands Linear regression rate of shoreline change statistics for New York State coastal wetlands Baselines used to calculate rate of shoreline change statistics for New York State coastal wetlands Intersection points used to calculate rate of shoreline change statistics for New York State coastal wetlands Historical shorelines used to calculate rate of shoreline change statistics for New York State coastal wetlands Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Elevation of marsh units in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York August 25, 2016 AUV Survey  - Observation Point Data August 25, 2016 AUV Survey - Dissolved Oxygen Surface August 26, 2016 AUV Survey - Dissolved Oxygen Surface August 23, 2016 AUV Survey - Observation Point Data August 24, 2016 AUV Survey - Observation Point Data August 23, 2016 AUV Survey - Dissolved Oxygen Surface August 24, 2016 AUV Survey - Dissolved Oxygen Surface August 26, 2016 AUV Survey - Observation Point Data Geospatial datasets of AUV observations including bottom dissolved oxygen in Great South Bay, Long Island, New York, August 2016 Coastal Groundwater Chemical Data from the North and South Shores of Long Island, New York Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Elevation of marsh units in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Mean tidal range in marsh units of Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Conceptual marsh units for Fire Island National Seashore and central Great South Bay salt marsh complex, New York Linear regression rate of shoreline change statistics for New York State coastal wetlands End point rate of shoreline change statistics for New York State coastal wetlands Intersection points used to calculate rate of shoreline change statistics for New York State coastal wetlands Baselines used to calculate rate of shoreline change statistics for New York State coastal wetlands Historical shorelines used to calculate rate of shoreline change statistics for New York State coastal wetlands Rate of shoreline change statistics for New York State coastal wetlands