Skip to main content
Advanced Search

Filters: Tags: Global Change Biology (X)

174 results (487ms)   

View Results as: JSON ATOM CSV
thumbnail
Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams....
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (“forcing”) typically triggers growth initiation, but many trees also require exposure to cool temperatures (“chilling”) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of...
Categories: Publication; Types: Citation; Tags: Global Change Biology
Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 °C warming...
Cheatgrass (Bromus tectorum) is a recognized, invasive annual weed of the western United States that reduces fire return times from decades to less than 5 years. To determine the interaction between rising carbon dioxide concentration ([CO2]) and fuel load, we characterized potential changes in biomass accumulation, C : N ratio and digestibility of three cheatgrass populations from different elevations to recent and near-term projections in atmospheric [CO2]. The experimental CO2 values (270, 320, 370, 420 μmol mol−1) corresponded roughly to the CO2 concentrations that existed at the beginning of the 19th century, that during the 1960s, the current [CO2], and the near-term [CO2] projection for 2020, respectively....
thumbnail
The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response...
Categories: Publication; Types: Citation; Tags: Global Change Biology
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration,...
thumbnail
Global change is likely to affect invasive species distribution, especially at range margins. In the eastern Sierra Nevada, California, USA, the invasive annual grass, Bromus tectorum, is patchily distributed and its impacts have been minimal compared with other areas of the Intermountain West. We used a series of in situ field manipulations to determine how B. tectorum might respond to changing climatic conditions and increased nitrogen deposition at the high-elevation edge of its invaded range. Over 3 years, we used snow fences to simulate changes in snowpack, irrigation to simulate increased frequency and magnitude of springtime precipitation, and added nitrogen (N) at three levels (0, 5, and 10 g m-2) to natural...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Accurate assessment of the spatial extent of forest cover is a crucial requirement for quantifying the sources and sinks of carbon from the terrestrial biosphere. In the more immediate context of the United Nations Framework Convention on Climate Change, implementation of the Kyoto Protocol calls for estimates of carbon stocks for a baseline year as well as for subsequent years. Data sources from country level statistics and other ground-based information are based on varying definitions of 'forest' and are consequently problematic for obtaining spatially and temporally consistent carbon stock estimates. By combining two datasets previously derived from the Advanced Very High Resolution Radiometer (AVHRR) at 1 km...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Permafrost peatlands store one-third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high-latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from young (<10 years) to old (>100 years) from two interior Alaska chronosequences. Permafrost originally aggraded simultaneously with peat accumulation (syngenetic permafrost) at both sites. We found that upon thaw, C loss of the forest peat C is equivalent to ~30% of the initial forest C stock and is directly proportional to the...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
The macronutrients that Arctic herbivores invest in their offspring are derived from endogenous reserves of fat and protein (capital) that females build prior to the period of investment or from foods they consume concurrently with investment (income). The relative contribution from each source can be influenced by temporal and environmental constraints on a female's ability to forage on Arctic breeding areas. Warming temperatures and advancing Arctic phenology may alter those constraints. From 2011–2014, we examined relationships among spring temperature, timing of migration and reproduction, and the sources of nutrients females deposited in eggs for three sympatric species of geese that nested in northern Alaska....
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period,...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often-elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on...
Categories: Publication; Types: Citation; Tags: Global Change Biology
thumbnail
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of...
Categories: Publication; Types: Citation; Tags: Global Change Biology
Increases in net primary production (NPP) may not necessarily result in increased C sequestration since an increase in uptake can be negated by concurrent increases in ecosystem C losses via respiratory processes. Continuous measurements of net ecosystem C exchange between the atmosphere and two experimental cheatgrass (Bromus tectorum L.) ecosystems in large dynamic flux chambers (EcoCELLs) showed net ecosystem C losses to the atmosphere in excess of 300 g C m?2 over two growing cycles. Even a doubling of net ecosystem production (NEP) after N fertilization in the second growing season did not compensate for soil C losses incurred during the fallow period. Fertilization not only increased C uptake in biomass but...


map background search result map search result map Global change effects on <i>Bromus tectorum</i> L. (Poaceae) at its high-elevation range margin Global change effects on <i>Bromus tectorum</i> L. (Poaceae) at its high-elevation range margin