Skip to main content
Advanced Search

Filters: Tags: Geothermal Resources (X)

69 results (7ms)   

View Results as: JSON ATOM CSV
Our research focuses on developing methods to analyze volcano-hydrothermal systems and on the application of these methods to particular volcanic systems in the western United States. Specific research questions include (1) What are the modes of heat and mass transport from magma to the shallow subsurface? (2) What are the pressure, temperature, and fluid-saturation conditions between magma and the land surface? (3) What controls the permeability of volcanoes? How does it vary in space and time? What role do temporal variations in permeability play in the evolution of volcanogenic hydrothermal systems and episodes of volcanic unrest? (4) How well-coupled are various fluid flow, transport, and mechanical deformation...
Quantitative understanding of groundwater and gas-rich fluid- and thermodynamics in volcanic areas is important for several reasons: 1) as a major source of hazard such as propellant in steam-driven explosions, lubricant in mudflows, and transport agent for toxic constituents such as arsenic and mercury that are dissolved from fresh volcanic rock, 2) groundwater pressure, temperature and chemical changes might signal one of the earliest warnings of volcanic unrest, 3) exploration and mining of geothermal energy and mineral deposits. Many of the geochemical, geodetic, and seismic signals measured at the ground surface as part of the volcano monitoring strategies have hydrothermal origins or magmatic origins modulated...
ABSTRACT Deep within the earth there exist immense reservoirs of energy in the form of heat-commonly referred to as geothermal resources. Unfortunately, most of these resources are at such depths that it is unlikely they will be recoverable in the foreseeable future. Nevertheless, the lure of seemingly inexhaustible amounts of relatively clean energy continues to hold a fascination for man. In certain limited situations man has already been able to tap these reservoirs and harness the energy to his own uses. More of this activity can be expected in the future. While geothermal energy will chiefly be used to produce electric power, persons responsible for water resources management must concern themselves with geothermal...
Categories: Publication; Types: Citation; Tags: geothermal resources, water law
The data in the csv and text files provided in this release are an update to the data tables originally published in USGS Open-File Report (OFR) 83-250 (https://doi.org/10.3133/cir892). Those data were published as paper tables and have until now only been available as pdf image documents that were not machine readable. USGS OFR 83-250 presented data for 2071 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 states. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions...
Reconnaissance and chemical and isotope sampling of thermal springs in the western United States has not generally provided information of sufficient detail to permit the geothermal potential of most individual areas to be determined with any certainty. This is especially true in the Cascade Mountain Range, where the chemical geothermometers indicate much lower temperatures of water-rock equilibrium than the sulfate-isotope geothermometer and the geologic setting seem to require. This discrepancy could be due to simple mixing of thermal and fresh water or rapid equilibration of water with the surrounding country rock as the fluids rise to the surface; alternatively, the sulfate-isotopic composition could be an artifact...


map background search result map search result map Digital data from USGS OFR 83-250: Selected data for low-temperature (less than 90 degrees C) geothermal systems in the United States; reference data for U.S. Geological Survey Circular 892 Digital data from USGS OFR 83-250: Selected data for low-temperature (less than 90 degrees C) geothermal systems in the United States; reference data for U.S. Geological Survey Circular 892