Skip to main content
Advanced Search

Filters: Tags: GW Model (X)

71 results (887ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Digital hydrogeologic datasets were developed for the Greene study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
thumbnail
Digital hydrogeologic datasets were developed for the Jamestown study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters (where present), LIDAR minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match what was done in previous work.
thumbnail
Problem - Roof collapses in the Retsof salt mine near Geneseo N.Y. in March and April of 1994 propagated upward through overlying bedrock, forming a 600-ft-long rubble zone or chimney that connected the mine to a glacial aquifer system and created sinkholes at land surface. Fresh water from the glacial aquifers flowed downward into the mine until the mine was completely flooded in January 1996. The mine opening is predicted to slowly close over a period of several hundred years, with most of the subsidence occurring before 2070. As the mine opening closes, about 40 percent of the brine will be displaced from the mine and migrate upward through the rubble chimney. Continuing monitoring of chloride concentrations...
thumbnail
This dataset includes georeferenced TIFF files from two separate reports for the Fishkill and Wappinger Falls study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
thumbnail
This dataset includes georeferenced tiff files from two separate reports for the Greene study area, where appropriate data have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology
The city of Cortland is located in Cortland County, New York. Previous USGS reports here include Water-Resources Investigations Report 96-4255 (Miller and others, 1998), and Open-File Report 81-1022 (Miller and Brooks, 1981). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
This dataset includes georeferenced tiff files from two separate reports for the Cortland study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology
thumbnail
This dataset includes georeferenced tiff files from three separate reports for the Rondout Neversink study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
thumbnail
This dataset includes "smoothing points" used in the creation of the Fishkill and Wappinger Falls hydrogeologic framework. Smoothing points were manually added and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, report points, and upland bedrock SSURGO points.
thumbnail
This dataset includes well logs used in the creation of the Cincinnatus hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
The town of Ellicottville is located in Cattaraugus County, New York. There are no previous USGS reports here. The four child pages below break the data up into interpreted geologic information, well logs, supplemental point data., and interpolation statistics
thumbnail
This dataset includes "smoothing points" used in the creation of the Cincinnatus hydrogeologic framework. Smoothing points were manually added by the project team and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points (and where applicable L1 and L2 points), and upland bedrock SURGO points.
The Jamestown study area is located within the counties of Chautauqua and Cattaraugus, New York. The predominant population center is the city of Jamestown. Previous USGS reports here include Open-File Report 82-113 (Stelz and others 1982) and Bulletin 58-1960 (Crain, 1966) The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes "smoothing points" used in the creation of the Roundout Neversink hydrogeologic framework. Smoothing points were manually added by the project team and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points (and where applicable L1 and L2 points), and upland bedrock SURGO points.
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
thumbnail
This dataset includes well logs used in the creation of the Ellicottville hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS, ESOGIS, and archived material) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
Digital hydrogeologic datasets were developed for the Cortland study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar mean elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
The Fishkill/Wappinger study area is located in the vicinity of the towns of Beacon, Wappingers Falls, Poughkeepsie, and Fishkill. Previous USGS reports here include USGS Scientific Investigations Map 3136 (Reynolds and Calef, 2010) and Open-File Report 80-437 (Snavely, 1980). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.


map background search result map search result map Simulation of migration of brine and saline water from the flooded Retsof salt mine in the Genesee Valley, New York Cortland study area Cortland study area georeferenced TIFFs and digitized data Cortland study area hydrogeologic framework layers Greene study area hydrogeologic framework layers Greene study area georeferenced TIFFs and digitized data Well Logs for the Greene sourcewater study area in upstate New York Roundout Neversink study area georeferenced TIFFs and digitized data Supplementary Points for the Cincinnatus sourcewater study area in upstate New York Supplementary Points for the Rondout Neversink sourcewater study area in upstate New York Fishkill and Wappinger Falls study area georeferenced TIFFs and digitized data Jamestown study area hydrogeologic framework layers Supplementary Points for the Fishkill and Wappinger Falls sourcewater study area in upstate New York Well Logs for the Ellicottville sourcewater study area in upstate New York Interpolation statistics for the Jamestown sourcewater study area in upstate New York Interpolation statistics for the Olean sourcewater study area in upstate New York Interpolation statistics for the Cortland sourcewater study area in upstate New York Greene study area hydrogeologic framework layers Well Logs for the Ellicottville sourcewater study area in upstate New York Interpolation statistics for the Cortland sourcewater study area in upstate New York Cortland study area hydrogeologic framework layers Simulation of migration of brine and saline water from the flooded Retsof salt mine in the Genesee Valley, New York Cortland study area georeferenced TIFFs and digitized data Supplementary Points for the Cincinnatus sourcewater study area in upstate New York Interpolation statistics for the Jamestown sourcewater study area in upstate New York Well Logs for the Greene sourcewater study area in upstate New York Interpolation statistics for the Olean sourcewater study area in upstate New York Jamestown study area hydrogeologic framework layers Greene study area georeferenced TIFFs and digitized data Supplementary Points for the Rondout Neversink sourcewater study area in upstate New York Roundout Neversink study area georeferenced TIFFs and digitized data Supplementary Points for the Fishkill and Wappinger Falls sourcewater study area in upstate New York Fishkill and Wappinger Falls study area georeferenced TIFFs and digitized data