Skip to main content
Advanced Search

Filters: Tags: Future (X) > Types: OGC WMS Layer (X)

4 results (229ms)   

View Results as: JSON ATOM CSV
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...
thumbnail
Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges....
thumbnail
Efforts to model and predict long-term variations in climate-based on scientific understanding of climatological processes have grown rapidly in their sophistication to the point that models can be used to develop reasonable expectations of regional climate change. This is important because our ability to assess the potential consequences of a changing climate for particular ecosystems or regions depends on having realistic expectations about the kinds and severity of change to which a region may be exposed.The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is a collaborative climate modeling research effort coordinated by the World Climate Research Programme (WCRP). This is the most recent phase...


    map background search result map search result map CMIP5 Future Average Annual Precipitation Normal 2031-2060 CMIP5 Future Average Annual Temperature 2031-2060 CMIP5 Projected Change in Average Annual Temperature 2031-2060 The Relative Impacts of Climate and Land-use Change on Conterminous United States Bird Species from 2001 to 2075 CMIP5 Future Average Annual Precipitation Normal 2031-2060 CMIP5 Future Average Annual Temperature 2031-2060 CMIP5 Projected Change in Average Annual Temperature 2031-2060 The Relative Impacts of Climate and Land-use Change on Conterminous United States Bird Species from 2001 to 2075