Skip to main content
Advanced Search

Filters: Tags: Flood (X) > Extensions: Shapefile (X)

18 results (30ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed a hydrologic and hydraulic analysis to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers. This geospatial dataset in shapefile format, guineo_24hr_pmp.shp, contains the maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, under a 24-hour probable maximum precipitation recurrence rainfall event.
thumbnail
In cooperation with the South Carolina Department of Transportation (SCDOT), the U.S. Geological Survey prepared geospatial layers illustrating the boundaries of the regions used in the South Carolina (SC) Stream Hydrograph Methods presented in Bohman (1990,1992). The region limits were described in written text and depicted in figures in Bohman (1990, 1992), but have not been provided as geospatial layers (due to the age of the original publications). This project used best-available geospatial data from the U.S. Environmental Protection Agency (USEPA) ecoregions (2013) to create equivalent geospatial representations of the Bohman (1990, 1992) region boundaries for the SC Stream Hydrograph Methods. These layers...
thumbnail
The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed a hydrologic and hydraulic analysis to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers. This geospatial dataset in shapefile format, guineo_6hr_pmp.shp, contains the maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, under a 6-hour probable maximum precipitation recurrence rainfall event.
thumbnail
7 aerial photographs were taken along the Little Missouri River in 1949. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1958. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Digital flood-inundation maps for a 9.3-mile reach of the Iowa River along the Meskwaki Settlement, Iowa, were created by the U.S. Geological Survey (USGS) in cooperation with the Sac and Fox Tribe of the Mississippi River in Iowa. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05451770 on the Iowa River at County Highway E49 near Tama, Iowa. Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at https://waterdata.usgs.gov/...
thumbnail
4 aerial photographs were taken along the Little Missouri River in 1982. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1939. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Aerial photographs were taken along the Little Missouri River in 2003, however the 2003 IKONOS satellite imagery is proprietary and therefore cannot be served here. The channel delineations for all years, including 2003, and the delineation of the outer flood-plain boundary are stored as shapefiles and are included in this data release. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved...
thumbnail
The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed a hydrologic and hydraulic analysis to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers. This geospatial dataset in shapefile format, guineo_sunny_day.shp, contains the maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, under sunny day condition (no precipitation).
thumbnail
4 aerial photographs were taken along the Little Missouri River in 1974. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
Reliable estimates of the magnitude and frequency of floods are an important part of the framework for hydraulic-structure design and flood-plain management. Annual peak flows measured at U.S. Geological Survey streamgages are used to compute flood-frequency estimates at those streamgages. However, flood-frequency estimates also are needed at ungaged stream locations. A process known as regionalization was used to develop regression equations to estimate the magnitude and frequency of floods at ungaged locations. This dataset contains the supporting tables and updated hydrologic region boundaries used in the 2017 flood-frequency study for Georgia, South Carolina, and North Carolina.
thumbnail
The pre1939 shapefile displays the boundary between the floodplain and the uplands (a boundary that remains constant), while the 1939-2003 shapefiles (assicated with the geoTIFFs) display both the constant boundary between the floodplain and uplands and the changing boundary between the channel and the floodplain. The pre1939 shapefile is included to represent the floodplain formed before the earliest imagery in 1939. Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. There are no aerial images...
thumbnail
5 aerial photographs were taken along the Little Missouri River in 1995. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlaid on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using a geographic information system (GIS) application. Reference: Miller, J.R., and J.M. Friedman. 2009. Influence of flow variability...
thumbnail
8 aerial photographs were taken along the Little Missouri River in 1966. All images were geo-referenced to the 1995 digital orthophoto quarter quadrangles as described by Miller and Friedman (2009). Both the flood plain and active channel of the river were delineated on the 1995 digital orthophoto quadrangles and overlain on rectified photos. ArcGIS was used to draw the polygons that delineate the flood plain and active channel; the delineation was saved as a SHP file. The separate images (geoTIFFs) can be viewed as a composite along with that year's channel delineation (SHP file) using ArcGIS, or any other geographic information system (GIS) compatible program. Reference: Miller, J.R., and J.M. Friedman. 2009....
thumbnail
The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed a hydrologic and hydraulic analysis to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers. This geospatial dataset in shapefile format, Guineo 24hr_100yr.shp, contains the maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, under a 24-hour 100-year recurrence rainfall event.


    map background search result map search result map Maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, Orocovis, Puerto Rico, under a 6-hour probable maximum precipitation recurrence rainfall event - polygon shapefile Maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, Orocovis, Puerto Rico, under a 24-hour 100-year recurrence rainfall event- polygon shapefile Maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, Orocovis, Puerto Rico, under sunny day condition - polygon shapefile Maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, Orocovis, Puerto Rico, under a 24-hour probable maximum precipitation recurrence rainfall event - polygon shapefile Shapefiles and Historical Aerial Photographs, Little Missouri River, 1939 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1949 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1958 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1966 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1974 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1982 Shapefiles and Historical Aerial Photographs, Little Missouri River, 1995 Shapefiles and Historical Aerial Photographs, Little Missouri River, 2003 Shapefiles and Historical Aerial Photographs, Little Missouri River, pre1939 Flood-inundation shapefile for the Iowa River at the Meskwaki Settlement in Iowa, 2019 Inundation polygons for flood-inundation maps for the Schoharie Creek in North Blenheim, NY Magnitude and Frequency of Floods for Rural Streams in Georgia, South Carolina, and North Carolina, 2017-Data Field survey points for flood-inundation maps for the Schoharie Creek in North Blenheim, NY Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Inundation polygons for flood-inundation maps for the Schoharie Creek in North Blenheim, NY Field survey points for flood-inundation maps for the Schoharie Creek in North Blenheim, NY Maximum inundation limits resulting from hypothetical dam failure of the Lago El Guineo Dam, Orocovis, Puerto Rico, under a 24-hour 100-year recurrence rainfall event- polygon shapefile Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Magnitude and Frequency of Floods for Rural Streams in Georgia, South Carolina, and North Carolina, 2017-Data