Skip to main content
Advanced Search

Filters: Tags: FLOOD PLAIN (X)

81 results (39ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data contain concentrations of major and trace elements in quality-assurance samples.These are the machine-readable versions of Tables 2–5 from the U.S. Geological Survey Scientific Investigations Report, Distribution of Mining Related Trace Elements in Streambed and Floodplain Sediment along the Middle Big River and Tributaries in the Southeast Missouri Barite District, 2012-15 (Smith and Schumacher, 2018). Table_2 contains concentrations of major and trace elements in regular and replicate streambed-sediment samples in samples BR-02 and BR-04. Each sample was sieved and analyzed for concentrations within the less than 2-, less than 0.250-, and less than 0.063-mm size fraction. Averaged relative percent...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
thumbnail
Floodplain forest species are presumed to interact strongly with the environment, as evidenced by pronounced spatial variation in flood-driven abiotic constraints and forest composition. These data describe functional diversity and environmental characteristics for 156 forest assemblages sampled on floodplain landforms within transects from the lower peninsula of Michigan. The functional diversity of each assemblage is characterized by two metrics of functional richness (Convex Hull Volume/CHV and Trait Onion Peeling/TOP), one metric of functional dispersion (FDis), and community weighted mean functional trait values. Functional diversity metrics were calculated from 12 quantitative and qualitative functional traits...
thumbnail
A high spatial resolution storm surge model was developed for the YK Delta area to assess biological impacts of storm surges under current and future climates. Storm surges are expected to be more frequent and more severe in the YK Delta area due to climate change and sea level rise. The biological impacts in the YK Delta due to the changed storm surges could be extreme.The model was assessed with respect to measured water level data at the coast and, where available, spatial extent of inundation, for 6 storms from the period 1992 to 2011. In total, inundation projections from 9 historical storms (5 from the assessment + 4 others) were developed. For each storm, an spatial inundation index (time-integral of water...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ARCHAEOLOGICAL AREAS, ARCHAEOLOGICAL AREAS, Academics & scientific researchers, COASTAL AREAS, COASTAL AREAS, All tags...
thumbnail
This database portrays the surface and shallow subsurface geology of the greater Charleston, S.C. region east of 80°30′ west and south of 33°15′ north. The region covers the entirety of Charleston County and portions of Berkeley, Colleton, Dorchester, and Georgetown Counties. Units locally exposed at the surface range in age from middle Eocene to Holocene, but most of the area is covered by Quaternary interglacial deposits. These are, from oldest to youngest, the Okefenokee, Waccamaw(?), Penholoway, Ladson, Ten Mile Hill, and Wando Formations and the Silver Bluff beds. Two cross sections (not included in the database), one running southeast from Harleyville to the coastline on James Island and the other running...
Tags: Adam Run fault, Ashepoo River, Ashley Formation, Ashley River, Ashley River fault, All tags...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). A geospatial model of floodplain inundation described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628) generates depth time series data for the UMRS floodplain extent. These depth time series data are typically generated from daily water surface elevations from three gaging locations along the mainstem of the Upper Mississippi River in Pool 26. However, due to missing data at the mid-pool gage location at Dixon Landing, this gage was not included in the analysis for 2009 - 2020. To understand the effect of excluding data from the mid-pool gage on...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September for select years since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were generated without water surface elevations from the mid-pool gaging location at Dixon Landing due to missing...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the relative elevation of a slope-detrended floodplain terrain surface and river mile location used to map surface water depths derived from gaging locations along UMRS, as described in Van Appledorn et al. (2021; doi: 10.1002/rra.3628). We excluded areas permanently wetted (aquatic areas), surfaces in agricultural production, roads, and developed areas. The data are intended for use in geospatial analyses of UMRS floodplain ecosystem patterns and processes.


map background search result map search result map Summary handout - Factsheet Table 02–Table 05-Quality-Assurance Data Database for the Surficial Geologic Map of the Charleston Region, Berkeley, Charleston, Colleton, Dorchester, and Georgetown Counties, South Carolina Functional diversity metrics of floodplain forests from Michigan's Lower Peninsula UMRS Floodplain Inundation Model - Illinois River - Alton Pool UMRS Floodplain Inundation Model - Illinois River - La Grange Pool UMRS Floodplain Inundation Model - Illinois River - Marseilles Pool UMRS Floodplain Inundation Depths - Pool 3 UMRS Floodplain Inundation Depths - Pool 22 UMRS Floodplain Inundation Model - Open River Reach - South - Section 2 UMRS Floodplain Inundation Model - Pool 7 UMRS Floodplain Inundation Model - Pool 11 UMRS Floodplain Inundation Model - Pool 12 UMRS Floodplain Inundation Model - Pool 15 UMRS Floodplain Inundation Model - Pool 19 UMRS Floodplain Inundation Model - Illinois River - Starved Rock Pool UMRS Floodplain Inundation Depths - Pool 13 UMRS Floodplain Inundation Depths - Pool 26 UMRS Floodplain Inundation Depths (with gage drop) - Pool 26 UMRS Floodplain Inundation Depth Differences - Pool 26 UMRS Floodplain Inundation Model - Pool 15 UMRS Floodplain Inundation Depths - Pool 3 UMRS Floodplain Inundation Model - Pool 12 UMRS Floodplain Inundation Model - Pool 11 UMRS Floodplain Inundation Depths - Pool 22 UMRS Floodplain Inundation Depths - Pool 13 Table 02–Table 05-Quality-Assurance Data UMRS Floodplain Inundation Model - Pool 19 UMRS Floodplain Inundation Model - Illinois River - Alton Pool UMRS Floodplain Inundation Model - Open River Reach - South - Section 2 UMRS Floodplain Inundation Depths - Pool 26 UMRS Floodplain Inundation Depths (with gage drop) - Pool 26 UMRS Floodplain Inundation Depth Differences - Pool 26 UMRS Floodplain Inundation Model - Illinois River - La Grange Pool Database for the Surficial Geologic Map of the Charleston Region, Berkeley, Charleston, Colleton, Dorchester, and Georgetown Counties, South Carolina Summary handout - Factsheet Functional diversity metrics of floodplain forests from Michigan's Lower Peninsula