Filters: Tags: Energy Resources Program (X)
90 results (11ms)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types Tag Schemes 
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DEEE0006731) with support from the U.S. Geological Survey's Energy Program.
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DEEE0006731) with support from the U.S. Geological Survey's Energy Program.
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DEEE0006731) with support from the U.S. Geological Survey's Energy Program.
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
This data set consists of 59 wideband magnetotelluric (MT) stations collected by the U.S. Geological Survey in July and August of 2020 as part of a 1year project funded by the Energy Resources Program of the U.S. Geological Survey to demonstrate full crustal control on geothermal systems in the Great Basin. Each station had 5 components, 3 orthogonal magnetic induction coils and 2 horizontal orthogonal electric dipoles. Data were collected for an average of 18 hours on a repeating schedule of alternating sampling rates of 256 samples/second for 7 hours and 50 minutes and 4096 samples/second for 10 minutes. The schedules were set such that each station was recording the same schedule to allow for remote reference...
Airborne electromagnetic (AEM) and magnetic survey data were collected during October 2014 in a 553squarekilometer area that includes the East Poplar oil field on the Fort Peck Indian Reservation in northeastern Montana, USA. Data surround the city of Poplar and extend south into the Missouri River floodplain. Data were acquired with the SkyTEM301 transient electromagnetic helicopterborne system together with a Geometrics G822 magnetometer. The AEM average depth of investigation is about 80 m. The survey was flown at a nominal flight height of 30 m above terrain along northsouth oriented flight lines; the majority of lines had a nominal spacing of 200 m with a subblock area in the central portion of the oil...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: CGGSC,
City of Poplar,
Crustal Geophysics and Geochemistry Science Center,
East Poplar Oil Field,
Energy Resources Program,
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DEEE0006731) with support from the U.S. Geological Survey's Energy Program.
This dataset consists of 24 magnetotelluric (MT) stations collected in 2017 in Gabbs Valley, Nevada. The U.S. Geological Survey acquired these data as part of Phase 2 of the Nevada Play Fairway Analysis Project led by the University of Nevada at Reno and funded by the Department of Energy (grant number DEEE0006731) with support from the U.S. Geological Survey's Energy Program.

