Skip to main content
Advanced Search

Filters: Tags: Emergency preparedness (X)

93 results (123ms)   

View Results as: JSON ATOM CSV
thumbnail
The purpose of this study is to evaluate tsunami hazard for the community of Seward and northern Resurrection Bay area, Alaska. This report will provide guidance to local emergency managers in tsunami hazard assessment. We used a numerical modeling method to estimate the extent of inundation by tsunami waves generated from earthquake and landslide sources. Our tsunami scenarios included a repeat of the tsunami of the 1964 Great Alaska Earthquake, as well as tsunami waves generated by two hypothetical Yakataga Gap earthquakes in northeastern Gulf of Alaska, hypothetical earthquakes in Prince William Sound and Kodiak asperities of the 1964 rupture, and local underwater landslides in Resurrection Bay. Results of numerical...
thumbnail
Potential tsunami hazards for the Fox Islands communities of Unalaska/Dutch Harbor and Akutan were evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources and taking into account historical observations. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Unalaska and Akutan are thought to be thrust earthquakes in the Fox Islands region with magnitudes ranging from Mw 8.8 to Mw 9.1 that have their greatest slip at 30-40 km (18-25 mi) depth. We also consider Tohoku-type ruptures and an outer-rise...
thumbnail
Staff from Alaska Earthquake Center, Geophysical Institute and Alaska Division of Geological & Geophysical Surveys evaluated potential tsunami hazards for the city of Sand Point, on Popof Island in the Shumagin Islands archipelago. We numerically modeled the extent of inundation from tsunami waves generated by local and distant earthquake sources. We considered the results in light of historical observations. The worst-case scenarios are defined by analyzing results of the sensitivity study of the tsunami dynamics with respect to different slip distributions along the Aleutian megathrust. For the Sand Point area, the worst-case scenarios are thought to be thrust earthquakes in the Shumagin Islands region with magnitudes...
thumbnail
Potential tsunami hazard for the Umnak Island community of Nikolski is evaluated by numerically modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various slip distributions along the Aleutian megathrust. The worst-case scenarios for Nikolski are thought to be thrust earthquakes in the Umnak Island region with their greatest slip at 10-30 km (6.2-19 mi) depth. We also consider Tohoku-type ruptures and an outer-rise rupture in the area of Umnak Island. The maximum predicted water depth on Main Street is about 15 m (49 ft), while the maximum current...


map background search result map search result map Tsunami inundation maps of Seward and northern Resurrection Bay, Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska Tsunami inundation map for the village of Nikolski, Alaska Tsunami inundation maps for the city of Sand Point, Alaska Tsunami inundation maps for the city of Sand Point, Alaska Tsunami inundation maps of Seward and northern Resurrection Bay, Alaska Tsunami inundation map for the village of Nikolski, Alaska Tsunami inundation maps of Fox Islands communities, including Dutch Harbor and Akutan, Alaska