Skip to main content
Advanced Search

Filters: Tags: Ecological Applications (X) > partyWithName: A. David McGuire (X) > Extensions: Citation (X) > partyWithName: Ecological Society of America (X)

5 results (166ms)   

View Results as: JSON ATOM CSV
thumbnail
We summarize the results of a recent interagency assessment of land carbon dynamics in Alaska, in which carbon dynamics were estimated for all major terrestrial and aquatic ecosystems for the historical period (1950–2009) and a projection period (2010–2099). Between 1950 and 2009, upland and wetland (i.e., terrestrial) ecosystems of the state gained 0.4 Tg C/yr (0.1% of net primary production, NPP), resulting in a cumulative greenhouse gas radiative forcing of 1.68 × 10−3 W/m2. The change in carbon storage is spatially variable with the region of the Northwest Boreal Landscape Conservation Cooperative (LCC) losing carbon because of fire disturbance. The combined carbon transport via various pathways through inland...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79 000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the factors that are most important in estimating severity and to identify areas affected by deep‐burning fires. In addition to standard methods of assessing severity using spectral information, we incorporated information regarding topography, spatial pattern of burning, and instantaneous characteristics such as fire weather and fire radiative power. Ensemble techniques using regression...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
It is important to understand how upland ecosystems of Alaska, which are estimated to occupy 84% of the state (i.e., 1,237,774 km2), are influencing and will influence state‐wide carbon (C) dynamics in the face of ongoing climate change. We coupled fire disturbance and biogeochemical models to assess the relative effects of changing atmospheric carbon dioxide (CO2), climate, logging and fire regimes on the historical and future C balance of upland ecosystems for the four main Landscape Conservation Cooperatives (LCCs) of Alaska. At the end of the historical period (1950–2009) of our analysis, we estimate that upland ecosystems of Alaska store ~50 Pg C (with ~90% of the C in soils), and gained 3.26 Tg C/yr. Three...
Categories: Publication; Types: Citation; Tags: Ecological Applications
thumbnail
Wetlands are critical terrestrial ecosystems in Alaska, covering ~177,000 km2, an area greater than all the wetlands in the remainder of the United States. To assess the relative influence of changing climate, atmospheric carbon dioxide (CO2) concentration, and fire regime on carbon balance in wetland ecosystems of Alaska, a modeling framework that incorporates a fire disturbance model and two biogeochemical models was used. Spatially explicit simulations were conducted at 1‐km resolution for the historical period (1950–2009) and future projection period (2010–2099). Simulations estimated that wetland ecosystems of Alaska lost 175 Tg carbon (C) in the historical period. Ecosystem C storage in 2009 was 5,556 Tg,...
Categories: Publication; Types: Citation; Tags: Ecological Applications