Skip to main content
Advanced Search

Filters: Tags: ECUADOR (X)

38 results (11ms)   

Filters
View Results as: JSON ATOM CSV
thumbnail
This code was created to run a bioenergetics-based model of movement for Galapagos tortoises. It calculates energetic surplus or deficit at a daily time scale based on inputted temperature (6 times a day) and NDVI value (a single value per days), as well as the mass of an individual. It then uses dynamic programming to determine the optimal timing of movement between two foraging habitats, given time-series of NDVI in each habitat, and temperatures in both habitats and in a transition zone between habitats. The model relies on a variety of empirically derived relationships, including allometric relationships, derived for different groups of organisms (i.e., some relationships are based on analyses across multiples...
The Andes Mountains of South America host significant porphyry copper deposits. The region is the major global source of copper and an area of active mining, exploration, and development. The Andes region was included in USGS global compilations of porphyry deposits published by Singer and others in 2005 and 2008. Since that time, many new discoveries and new resource data have become available. This compilation includes new and updated location, references, and grade and tonnage data for porphyry copper deposits in the Andes along with grade and tonnage data from the previous compilations. The data release includes a data table, references, and shapefiles of porphyry copper locations and political boundaries.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 10 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 10 percent probability of exceedance in 50 years.
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the 2010 USGS preliminary model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the gridded data for the 2010 PGA at 10% probability can be found in the zip archive that can be downloaded using a link on this page.
thumbnail
Maximum considered earthquake geometric mean peak ground acceleration maps (MCEG) are for assessment of the potential for liquefaction and soil strength loss, as well as for determination of lateral earth pressures in the design of basement and retaining walls. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCEG ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic...
thumbnail
A comparison of the 2017 USGS South America seismic hazard model and the Global Seismic Hazard Assessment Program (GSHAP) model was made to see how the models differ. The comparison was made as the ratio of PGA at 10% probability of exceedance in 50 years. The ratio map is included here as a geo-referenced tiff (GeoTIFF). The gridded data for the 2017 PGA at 10% probability can be found here, while the GSHAP data can be found here. Shedlock, K.M., Giardini, Domenico, Grünthal, Gottfried, and Zhang, Peizhan, 2000, The GSHAP Global Seismic Hazar Map, Sesimological Research Letters, 71, 679-686. https://doi.org/10.1785/gssrl.71.6.679
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 50 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 0.2-second period with a 2 percent probability of exceedance in 50 years.
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. It represents the annual rate of exceedance versus 0.2-second spectral response acceleration.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for peak ground acceleration with a 2 percent probability of exceedance in 50 years.
thumbnail
South America is part of Region 6 (Central and South America) for the World Energy Assessment. South America was divided into 107 geologic provinces as background for prioritization and assessment of undiscovered oil and gas resources. The boundaries of geologic provinces are required for the assessment as oil and gas. Data must be allocated to a geographic entity so that decisions can be made as to which provinces are priority for the assessment. Many sources of geologic information were used to define the province boundaries in South America, and several versions of the map were reviewed. Of the 107 geologic provinces defined in South America, about 40 have had some oil and gas production to date.
Categories: Data, pre-SM502.8; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: AR, Acre Basin, Province 6042, Altiplano Basin, Province 6065, Amazonas Basin, Province 6012, Andean Province 6006, All tags...
thumbnail
Album caption and index card: Vertical aerial photo of severely crevassed glaciers on the slopes of Cotopaxi, a nearly symmetrical volcano, near the Equator in north-central Ecuador. (Photo courtesy of U. S. Air Force) Portion of photograph published on page 2 in U.S. Geological Survey GIP, Glaciers: Clues to Future Climates? by R. W. Williams, Jr. 1984.
thumbnail
Risk-targeted maximum considered earthquake ground acceleration maps (MCER) are for the design of buildings and other structures. The maps are derived from the USGS seismic hazard maps in accordance with the site-specific ground-motion procedures of the NEHRP Recommended Seismic Provisions for New Building and Other Structures and the ASCE Minimum Design Loads for Buildings and Other Structures (also known as the ASCE 7 Standard; ASCE, 2016). The MCER ground motions are taken as the lesser of probabilistic and deterministic values, as explained in the Provisions. The gridded probabilistic and deterministic values for 0.2-second spectral response acceleration are available here.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for horizontal spectral response acceleration for 1.0-second period with a 50 percent probability of exceedance in 50 years.
thumbnail
This maps portrays the spatial potential for damaging earthquake ground shaking quantified as moderate (MMI ≥ VII) in 100 years. The maps and data are based on the average of the results obtained from peak ground acceleration and 1.0-second horizontal spectral acceleration. Site specific soil factors based on Vs30 shear wave velocities were implemented using a simple topographic proxy technique (Allen and Wald, 2009) and site amplification based on the relationships of Seyhan and Stewart (2014). MMI ≥ VII is equivalent to peak ground acceleration of 0.22g and 1.0-second horizontal spectral acceleration of 0.23g (Worden et al., 2012). Allen, T.A. and Wald, D.J. 2009,. On the use of high-resolution topographic...
thumbnail
Bottom simulating reflections (BSRs) are seismic features that are imaged in marine sediments using high-energy, impulsive seismic sources such as air guns or generator-injector guns. BSRs often cut across sediment stratigraphy and are interpreted as marking the deepest depth at which gas hydrate can exist. Gas hydrate is a naturally occurring and widely distributed frozen form of water and gas (usually methane) stable at low temperatures (up to about 25 degrees Celsius [°C]) and intermediate pressures (those that usually correspond to greater than 500 meters water depth). BSRs have been mapped in all the world’s oceans, in inland seas (such as the Black Sea), and in Lake Baikal in Russia. This data release consists...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alaska, Amazonia, Antarctica, Arctic, Argentina, All tags...
thumbnail
This dataset presents information about exploration sites relating to the mineral industries of Latin America and the Caribbean. Exploration sites include sites in active exploration status, sites with feasibility work being performed or planned, exploration at a producing mine for a mine expansion, or sites that are approved for or under development but not yet at the producing stage. Relevant data fields include the mineral commodities present at the site, project name, project type, operator, owners of the site, geographic coordinates, and locational accuracy. These data are dervied from work conducted by staff of the Material Flow Analysis section of the National Minerals Information Center.
thumbnail
A seismic hazard model for South America, based on a smoothed (gridded) seismicity model, a subduction model, a crustal fault model, and a ground motion model, has been produced by the U.S. Geological Survey. These models are combined to account for ground shaking from earthquakes on known faults as well as earthquakes on un-modeled faults. This data set represents the results of calculations of hazard curves for a grid of points with a spacing of 0.1 degrees in latitude and longitude. This particular data set is for Modified Mercalli Intensity with a 2 percent probability of exceedance in 50 years. The maps and data were derived from PGA ground-motion conversions of Worden et al. (2012), and include soil amplification...


map background search result map search result map Vertical aerial photo of severely crevassed glaciers on the slopes of Cotopaxi, Ecuador. No date Mineral exploration sites of Latin America and the Caribbean Full annual cycle bioenergetics model of migration applied to Galapagos tortoises—Model Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model 1.0-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years South America Province Boundaries, 1999 (prv6ag) Porphyry copper deposits and prospects in the Andes Mountains of South America Global compilation of published gas hydrate-related bottom simulating reflections Full annual cycle bioenergetics model of migration applied to Galapagos tortoises—Model Vertical aerial photo of severely crevassed glaciers on the slopes of Cotopaxi, Ecuador. No date Porphyry copper deposits and prospects in the Andes Mountains of South America Comparison with the 2010 USGS preliminary model Comparison with the 1999 Global Seismic Hazard Assessment (GSHAP) model South America Province Boundaries, 1999 (prv6ag) 1.0-second spectral response acceleration (5% of critical damping) with a 10% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 2% probability of exceedance in 50 years 0.2-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years 1.0-second spectral response acceleration (5% of critical damping) with a 50% probability of exceedance in 50 years Peak ground acceleration with a 2% probability of exceedance in 50 years Peak ground acceleration with a 10% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 2% probability of exceedance in 50 years Modified Mercalli Intensity, based on peak ground acceleration, with a 50% probability of exceedance in 50 years Mineral exploration sites of Latin America and the Caribbean Global compilation of published gas hydrate-related bottom simulating reflections