Skip to main content
Advanced Search

Filters: Tags: Core analysis (X) > partyWithName: William F Waite (X) > Categories: Data (X) > partyWithName: Coastal and Marine Geology Program (X)

5 results (49ms)   

View Results as: JSON ATOM CSV
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
One goal of the Indian National Gas Hydrate Program's NGHP-02 expedition was to examine the geomechanical response of marine sediment to the extraction of methane from gas hydrate found offshore eastern India in the Bay of Bengal. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages in a lattice of water molecules. Methane gas hydrate is a potential energy resource, but whether extracting methane from gas hydrate in the marine subsurface is technically and economically viable remains an open research topic as of 2018. This data release provides insight about a poorly quantified aspect of this process: the reaction of fine-grained sediment particles...
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
One goal of the Indian National Gas Hydrate Program's NGHP-02 expedition was to examine the geomechanical response of marine sediment to the extraction of methane from gas hydrate found offshore eastern India in the Bay of Bengal. Methane gas hydrate is a naturally occurring crystalline solid that sequesters methane in individual molecular cages in a lattice of water molecules. Methane gas hydrate is a potential energy resource, but whether extracting methane from gas hydrate in the marine subsurface is technically and economically viable remains an open research topic as of 2018. This data release provides insight about a poorly quantified aspect of this process: the reaction of fine-grained sediment particles...


    map background search result map search result map Sedimentation Rate Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, Krishna-Godavari Basin, During India's National Gas Hydrate Program Expedition NGHP-02 Characteristic Settling Time and Interface Height Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, During India's National Gas Hydrate Program Expedition NGHP-02 PCCT measurements of the consolidation characteristics, constrained modulus and compressional wave velocity for fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02 PCCT measurements of stress and strain during direct shear tests of fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02 PCCT demonstration of flow rate versus pressure gradient measurements for determining permeability in fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02 PCCT measurements of the consolidation characteristics, constrained modulus and compressional wave velocity for fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02 PCCT measurements of stress and strain during direct shear tests of fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02 PCCT demonstration of flow rate versus pressure gradient measurements for determining permeability in fine-grained sediment collected from Area C, Krishna-Godavari Basin during India's National Gas Hydrate Program, NGHP-02 Sedimentation Rate Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, Krishna-Godavari Basin, During India's National Gas Hydrate Program Expedition NGHP-02 Characteristic Settling Time and Interface Height Dependence on Pore Fluid Chemistry for Sediment Collected From Area B, During India's National Gas Hydrate Program Expedition NGHP-02