Skip to main content
Advanced Search

Filters: Tags: Completed (X) > Categories: Publication (X)

296 results (9ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss...
We conducted detailed resurveys of a montane mammal, Urocitellus beldingi, to examine the effects of climate change on persistence along the trailing edge of its range. Of 74 California sites where U. beldingi were historically recorded (1902–1966), 42 per cent were extirpated, with no evidence for colonization of previously unoccupied sites. Increases in both precipitation and temperature predicted site extirpations, potentially owing to snowcover loss. Surprisingly, human land-use change buffered climate change impacts, leading to increased persistence and abundance. Excluding human-modified sites, U. beldingi has shown an upslope range retraction of 255 m. Generalized additive models of past distribution were...
The phenomenon of cheatgrass die-off is a common and naturally- occurring stand failure that can eliminate the presence of this annual grass for a year or more, affecting tens to hundreds of thousands of acres in some years. We designed a study to determine if the temporary lack of cheatgrass caused by die-offs is a restoration opportunity. We seeded native perennial species at three die-offs in the Winnemucca, Nevada area. Native grass establishment in die-offs was almost three times higher in the first season at all sites, relative to adjacent areas without die-off. In the second season, establishment was five times higher in the die-off at two sites, and plants were notably larger in the die-off at the third...
thumbnail
Article Abstract: Although riparian and aquatic ecosystems make up a small fraction of the area in arid and semi-arid lands, they are critical for the survival of desert life. There are, however, few compendia of efforts to define the quantity of water needed to maintain these ecosystems and understand the risks and stressors to them. Through our analysis we found that 62% of the rivers examined in the deserts of the U.S. and Mexico have had just one study over the past four decades and 67% of studies used qualitative methods. Furthermore, only one-third of the 312 species catalogued in our work have been studied more than once and only 5% have been considered five or more times. The most common risks or stressors...
Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity canaccommodate projected temperature change for this century. Evaluating clines in phenological traits and the extentand variation in plasticity can provide key information on assessing risk of maladaptation and developing strategiesto mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemi-sia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to lateNovember among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% couldbe assigned to plasticity and genetic variation...
Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under...
Conservation Biology Institute (CBI) has been developing web applications to centralize and serve credible and usable information that allows natural resource managers, as well as the general public, to better understand the challenges posed by on-going environmental change. In particular CBI has designed a series of climate consoles that provide natural resource managers the most recent 5th Climate Model Intercomparison Program (CMIP5) climate projections, landscape intactness, and soil sensitivity for a series of reporting units over the western United States. The publically available web sites were refined based on feedback from a variety of users. In this paper, we describe each of the tools developed as open-source...
The loss of big sagebrush (Artemisia tridentata Nutt.) on sites disturbed by fire has motivated restoration seeding and planting efforts. However, the resulting sagebrush establishment is often lower than desired, especially in dry areas. Sagebrush establishment may be increased by addressing factors such as seed source and condition or management of the plant community. We assessed initial establishment of seeded sagebrush and four populations of small outplants (from different geographies, climates, and cytotypes) and small sagebrush outplants in an early seral community where mowing, herbicide, and seeding of other native plants had been experimentally applied. No emergence of seeded sagebrush was detected. Mowing...
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models...
The steep mountain slopes of Haleakalā Volcano (Maui, HI) support some of the most spatially diverse environments on the planet. Microclimates found across vertical gradients on the mountain slopes can change over relatively short differences in slope exposure and elevation and are strongly influenced by a persistent temperature inversion and northeast trade winds that are characteristic of this region. Eleven climate stations, which comprise the HaleNet climate network, have been monitoring climatic conditions along a 2030-m leeward (960 to 2990 m) and a 810-m windward (1650 to 2460 m) elevational transect, beginning as early as June of 1988. Hourly measurements of solar radiation, net radiation, relative humidity,...
Categories: Data, Publication; Types: Citation; Tags: Journal, Publication, completed
Publication titled “​Statistical downscaling of rainfall changes in Hawai‘i based on the CMIP5 global model projections”
Climate change is anticipated to affect freshwater resources, but baseline data on the functioning of tropical watersheds is lacking, limiting efforts that seek to predict how watershed processes, water supply, and streamflow respond to anticipated changes in climate and vegetation change, and to management. To address this data gap, we applied the distributed hydrology soil vegetation model (DHSVM) across 88 watersheds spanning a highly constrained, 4500 mm mean annual rainfall (MAR) gradient on Hawai‘i Island to quantify stream flow at 3-h time-steps for eight years in response to the independent and interactive effects of (1) large observed decrease in MAR; (2) projected warming and altered precipitation; and...
Since the beginning of the industrial revolution, the concentration of atmospheric CO2 has been rising due to the burning of fossil fuels. increased absorption of this CO2 by the oceans is lowering the seawater pH and aragonite saturation state (Ωar). This process is known as ocean acidification (OA). numerous studies have shown a direct correlation between declining ocean pH, declining Ωar, and declining coral growth, but the mechanism is not understood. Various experiments designed to evaluate the relative importance of pH, CO3 2–, Ωar, HCO3 –, aqueous CO2, total alkalinity, and total inorganic carbon (Ct) to coral calcification have led to opposing conclusions. A reanalysis of existing data suggests that the...
For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21%...
thumbnail
This is a 30 meter grid that maps upland and wetland wildlife habitats/ecological systems for the Northeast, including all 13 states from Maine to Virginia, west to New York, Pennsylvania and West Virginia. Mapped habitat types are drawn from the Northeastern Terrestrial Habitat Classification System (NETHCS). The NETHCS is based on NatureServe’s Ecological Systems Classification, augmented with additional information from individual state wildlife classifications and other information specific to wildlife managers. A terrestrial ecological system is defined as a mosaic of plant community types that tend to co-occur within landscapes with similar ecological processes, substrates, and/or environmental gradients,...
Publication from the NALCC co-funded project Identifying Important Migratory Landbird Stopover Sites in the Northeast.With many of the world’s migratory bird populations in alarming decline, broad‐scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light‐polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi‐year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density...
thumbnail
This layer respresents First Nations Reservations that occupy area in the Crown of the Continent Ecosystem or occupy area within a 50 kilometer buffer surrounding the border. The data is derived from Alberta and British Columbia data from GeoGratis, which was created in 2003 and revised in 2015; and Montana data from the US Bureau of Land Management (BMSC).
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species....
Understanding how annual climate variation affects population growth rates across a species’ range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species’ range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8175 observations of year-to-year change in...
thumbnail
Habitat similarity index (HSI) values for greater sage-grouse across their western range. HSI values represent the relationship of environmental values at map locations to the multivariate model of minimum requirements for sage-grouse defined by land cover, anthropogenic variables, soil, topography, and climate.


map background search result map search result map Sage Grouse HSI (habitat similarity index) Terrestrial Habitat, Northeast First Nations and Indian Reservations in the Crown of the Continent Ecosystem Environmental flows in the desert rivers of the United States and Mexico: Synthesis of available data and gap analysis Sage Grouse HSI (habitat similarity index) First Nations and Indian Reservations in the Crown of the Continent Ecosystem Terrestrial Habitat, Northeast Environmental flows in the desert rivers of the United States and Mexico: Synthesis of available data and gap analysis