Skip to main content
Advanced Search

Filters: Tags: ClimatologyMeteorologyAtmosphere (X)

2,775 results (23ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This file includes two raster layers. One of the raster files (LCC_Windgt90x.img) displays the data by differentiating between areas that have a greater than 90 percent or higher risk of development from areas with less than a 90 percent risk of wind energy development. The second raster file (LCC_WindProbs.img) displays the energy risk across a gradient, but does not include the categories seen in the Energy Forecast Web Mapping Tool. The values range from 0-1, with larger values representing a higher probability of development.
thumbnail
In this project, we used an advanced statistical downscaling method that combines high-resolution observations with outputs from 16 different global climate models based on 4 future emission scenarios to generate the most comprehensive dataset of daily temperature and precipitation projections available for climate change impacts in the U.S. The gridded dataset covers the continental United States, southern Canada and northern Mexico at one-eighth degree resolution and Alaska at one-half degree resolution. The high-resolution projections produced by this work have been rigorously quality-controlled for both errors and biases in the global climate and statistical downscaling models. We also calculated projected future...
thumbnail
PRISM climate data for Wyoming. Data can be accessed through the Geospatial Data Gateway http://datagateway.nrcs.usda.gov/.
thumbnail
This set of files includes downscaled projections of decadal means of annual mean temperatures (in degrees Celsius, no unit conversion necessary) for each decade from 1910 - 2006 (CRU TS 3.0) or 2009 (CRU TS 3.1) at 771x771 meter spatial resolution. Each file represents a decadal mean of an annual mean calculated from mean monthly data. The spatial extent includes Alaska. Each set of files originates from the Climatic Research Unit (CRU, http://www.cru.uea.ac.uk/) TS 3.0 or 3.1 dataset. TS 3.0 extends through December 2006 while 3.1 extends to December 2009. ============================= Downscaling: These files are bias corrected and downscaled via the delta method using PRISM (http://prism.oregonstate.edu/)...
thumbnail
This set of files includes downscaled projections of decadal means of monthly mean temperatures (in degrees Celsius, no unit conversion necessary) for each month of every decade from 2010 - 2100 (see exceptions below) at 771x771 meter spatial resolution. Each file represents a mean monthly mean in a given decade. The spatial extent includes Alaska. ========= Overview: Most of SNAP’s climate projections come in multiple versions. There are 5 climate models, one 5 model average, 3 climate scenarios, 12 months, and 100 years. This amounts to 21,600 files per variable for monthly data. Some datasets are derived products such as monthly decadal averages or specific seasonal averages, among others. This specific dataset...
thumbnail
LOCA is a statistical downscaling technique that uses past history to add improved fine-scale detail to global climate models. We have used LOCA to downscale 32 global climate models from the CMIP5 archive at a 1/16th degree spatial resolution, covering North America from central Mexico through Southern Canada. The historical period is 1950-2005, and there are two future scenarios available: RCP 4.5 and RCP 8.5 over the period 2006-2100 (although some models stop in 2099). The variables currently available are daily minimum and maximum temperature, and daily precipitation. For more information visit: http://loca.ucsd.edu/
thumbnail
WaSSI (Water Supply Stress Index) predicts how climate, land cover, and human population change may impact water availability and carbon sequestration at the watershed level (about the size of a county) across the lower 48 United States. WaSSI users can select and adjust temperature, precipitation, land cover, and water use factors to simulate change scenarios for any timeframe from 1961 through the year 2100.Simulation results are available as downloadable maps, graphs, and data files that users can apply to their unique information and project needs. WaSSI generates useful information for natural resource planners and managers who must make informed decisions about water supplies and related ecosystem services...
thumbnail
The U.S. Great Plains is known for frequent hazardous convective weather and climate extremes. Across this region, climate change is expected to cause more severe droughts, more intense heavy rainfall events, and subsequently more flooding episodes. These potential changes in climate will adversely affect habitats, ecosystems, and landscapes as well as the fish and wildlife they support. Better understanding and simulation of regional precipitation can help natural resource managers mitigate and adapt to these adverse impacts. In this project, we aim to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model and use the high quality dynamic downscaling results...
These results are a compilation of climate change vulnerability assessments in the southeastern portion of the LCC, covering the area from southern West Virginia, south to Alabama, west to eastern Kentucky and Tennessee. Hyperlinks to additional information are separated into two additional spreadsheets, one for aquatic and subterranean, and another for terrestrial species.
thumbnail
The Japanese Meteorological Agency Non-Hydrostatic Model (NHM) is nested inside the Regional Spectral Model (RSM) at 10 km grid resolution which in turn is forced at the lateral boundaries to dynamically downscale two general circulation models (GCMs) that participated in the Coupled Model Intercomparison Project (CMIP5). The downscaled regional climate change projections were developed for two twenty-year timeslices for the high Greenhouse Gas Emission Scenario, RCP8.5. These climate change projections were developed to provide information about climate change for various climate change applications within Puerto Rico and the US Virgin Islands. In particular, the model output parameters were saved in response to...
thumbnail
Average Winter (Jan-Mar) Temperature (2045-2060) simulated by RegCM3 with GENMOM projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline...
thumbnail
Difference of Spring (Apr-Jun) Precipitation (2045-2060 vs 1968-1999) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are millimeters. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations....
thumbnail
Potential Evapotranspiration simulated by the biogeography model MAPSS using RegCM3 climate with GFDL projections as boundary conditions. Units are millimeters of water. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds,...
thumbnail
Average Summer (Jul-Sep) Precipitation (2045-2060) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are millimeters. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline...
thumbnail
Difference of Average Winter (Jan-Mar) Temperature (2045-2060 vs 1968-1999) simulated by RegCM3 with GENMOM projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations....
thumbnail
Average Annual Temperature (2015-2030) simulated by RegCM3 with ECHAM5 projections as boundary conditions. Units are degrees Celsius. These data were generated by the regional climate model RegCM3 with boundary conditions from a GCM future climate projections. The data were downscaled statistically by calculating differences (anomalies) between the RegCM3 results with GCM-driven boundary conditions for 1968-99 and those for a future period, in this case 2015-2030. The anomalies were added (temperatures) or multiplied (precipitation) to a climate baseline from PRISM (Parameter-elevation Regressions on Indepenent Slopes Model - prism.oregonstate.edu) data based on historical observations. The PRISM baseline was calculated...
thumbnail
Two future climate change scenarios at a resolution of 0.5 degree latitude/longitude for the conterminous United States were used in the Vegetation Ecosystems Modelling Analysis Project (VEMAP): a moderately warm scenario produced by the general circulation model from the Hadley Climate Centre [Johns et al., 1997; Mitchell and Johns, 1997], HADCM2SUL (up to a 2.8oC increase in average annual U.S. temperature in 2100) and a warmer scenario (up to a 5.8oC increase in average annual U.S. temperature in 2100), CGCM1, from the Canadian Climate Center [Boer et al., 1999a, 1999b; Flato et al., 1999]. Both general circulation models (GCMs) included sulfate aerosols and a fully dynamic 3-D ocean. Both transient scenarios...
thumbnail
Increasing temperatures across the region will cause a lengthening of the growing season and an increase in heat accumulation (measured as summer warmth index) during summer months. These changes could have profound effects on phenology, plant growth, water availability, and species distributions. July temperature isotherms and SWI have been used to help define vegetation distribution and potential for vegetation change across the boreal and arctic biomes. The northern limit of the boreal forest occurs approximately at the 12°C mean July isotherm and a SWI of 35°C mo, and strong linkages have been described between SWI and treeline advance. The southern boundary for the boreal forest occurs at approximately the...


map background search result map search result map Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 Half degree-Alaska Daily Downscaled Climate Projections by Katharine Hayhoe WASSI Future Change in Water Supply Stress Index 1991-2010 Projected Future LOCA Statistical Downscaling (Localized Constructed Analogs) Statistically downscaled CMIP5 climate projections for North America Blueprint 2.2 Data Download Blueprint 1.0 Development Process Very High-Resolution Dynamic Downscaling of Regional Climate for Use in Long-term Hydrologic Planning along the Red River Valley System JMA Non-Hydrostatic Model (NHM): Puerto Rico and US Virgin Islands Dynamical Downscaled Climate Change Projections BLM REA COP 2010 Difference of Spring (Apr-Jun) Precipitation (2045-2060 vs 1968-1999) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Winter (Jan-Mar) Temperature (2045-2060) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Potential Evapotranspiration (2045-2060) Simulated by MAPSS using RegCM3 Climate with GFDL Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Summer (Jul-Sep) Precipitation (2045-2060) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Average Winter (Jan-Mar) Temperature (2045-2060 vs 1968-1999) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Annual Temperature (2015-2030) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Historic annual average precipitation (mm) 1961-1990 (VEMAP version) for the Colorado Plateau ecoregion, USA BLM REA CYR 2013 Long-term Future (2060s) Mean July Temperature Isotherms JMA Non-Hydrostatic Model (NHM): Puerto Rico and US Virgin Islands Dynamical Downscaled Climate Change Projections Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 BLM REA COP 2010 Difference of Spring (Apr-Jun) Precipitation (2045-2060 vs 1968-1999) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Winter (Jan-Mar) Temperature (2045-2060) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Potential Evapotranspiration (2045-2060) Simulated by MAPSS using RegCM3 Climate with GFDL Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Summer (Jul-Sep) Precipitation (2045-2060) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Difference of Average Winter (Jan-Mar) Temperature (2045-2060 vs 1968-1999) Simulated by RegCM3 with GENMOM Projections as Boundary Conditions (Western US) BLM REA COP 2010 Average Annual Temperature (2015-2030) Simulated by RegCM3 with ECHAM5 Projections as Boundary Conditions (Western US) BLM REA COP 2010 Historic annual average precipitation (mm) 1961-1990 (VEMAP version) for the Colorado Plateau ecoregion, USA Blueprint 2.2 Data Download Blueprint 1.0 Development Process BLM REA CYR 2013 Long-term Future (2060s) Mean July Temperature Isotherms WASSI Future Change in Water Supply Stress Index 1991-2010 Half degree-Alaska Daily Downscaled Climate Projections by Katharine Hayhoe Projected Future LOCA Statistical Downscaling (Localized Constructed Analogs) Statistically downscaled CMIP5 climate projections for North America Very High-Resolution Dynamic Downscaling of Regional Climate for Use in Long-term Hydrologic Planning along the Red River Valley System