Skip to main content
Advanced Search

Filters: Tags: Climate modeling (X)

14 results (241ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Climate policy developers and natural resource managers frequently desire high-resolution climate data to prepare for future effects of climate change. But they face a long-standing problem: the vast majority of climate models have been run at coarse resolutions—from hundreds of kilometers in global climate models (GCMs) down to 25–50 kilometers in regional climate models (RCMs).
The south-central U.S. exists in a zone of dramatic transition in terms of eco-climate system diversity. Ecosystems across much of the region rely on warm-season convective precipitation. These convective precipitation is subject to large uncertainties under climate change scenario, possibly leading to gradual or sudden changes in habitats, and ecosystems. The convective precipitation in this region, occurring on a range of time and space scales, is extremely challenging to predict in future climate scenario. In this project, we established a unique, cutting-edge, dynamic downscaling capability to address the challenge of predicting precipitation in the south-central U.S. in current and future climate scenarios....
thumbnail
While home to many people and a rich diversity of unique plant and animal life, the U.S. territories of Guam and American Samoa are especially vulnerable to the effects of climate change because of their small size, geographical remoteness, and exposure to threats such as sea-level rise and increased storm surge. Developing predictions of future conditions is often the first step in helping decision makers and communities plan for change. However, to date, available global climate models have been too coarse in resolution to be useful for planning in the context of small, isolated islands. This project produced the first-ever set of high-resolution climate projections for Guam and American Samoa, providing information...
thumbnail
By collaborating with water managers and combining climate modeling and paleoclimate methods, the project team will incorporate prediction tools to assess risk of extreme wet/dry climate conditions for the next 10-15 years (i.e. decadal prediction). Our target area is the Wasatch Range Metropolitan Area that includes Salt Lake City one of the largest population centers within the Southern Rockies LCC. We will focus on projecting future water availability and quality with a specific goal for decadal prediction. The project team has partnered with numerous water agencies in the Wasatch Range who have made in-kind contributions towards this project. This partnership guarantees that the results will be disseminated,...
The NE CASC boasts an interdisciplinary array of scientists, from ecologists to biologists, hydrologists to climatologists, each contributing new, original academic research to advance our understanding of the impacts of climate change on wildlife and other natural resources in the Northeast. Needed was an outreach specialist who would interface directly with the management agencies who benefited from this research to aid the integration of this research into their management planning as part of adapting to climate change. A climatologist was preferred to address queries about climate modeling, climate change uncertainties, and other areas of climate science outside the expertise of NE CASC ecologists, biologists,...
The growth of carbonate formations in caves (speleothems) is sensitive to changes in environmental conditions at the surface (temperature, precipitation and vegetation) and can provide useful paleoclimatic and paleoenvironmental information. We use 73 230Th dates from speleothems collected from a cave in southwestern Oregon (USA) to constrain speleothem growth for the past 380 000 years. Most speleothem growth occurred during interglacial periods, whereas little growth occurred during glacial intervals. To evaluate potential environmental controls on speleothem growth we use two new modeling approaches: i) a one-dimensional thermal advection–diffusion model to estimate cave temperatures during the last glacial cycle,...
Abstract (from http://link.springer.com/article/10.1007/s00382-015-2845-1): Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health...


    map background search result map search result map 21st Century High-Resolution Climate Projections for Guam and American Samoa WaterSMART: Building Decadal Prediction of Extreme Climate for Managing Water Supply in Intermountain West Data Integration Workshop in Support of the Coastal Temperate Rainforest of Southeast Alaska and British Columbia Climate Science Conference Climate Science Conference Data Integration Workshop in Support of the Coastal Temperate Rainforest of Southeast Alaska and British Columbia WaterSMART: Building Decadal Prediction of Extreme Climate for Managing Water Supply in Intermountain West 21st Century High-Resolution Climate Projections for Guam and American Samoa