Skip to main content
Advanced Search

Filters: Tags: Climate change (X)

5,267 results (69ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract Statistical relationships between annual floods at 200 long-term (85–127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing...
thumbnail
This package contains 13 polygon layers representing baseline and predicted future climate niches (2050s & 2080s) of Sitka Spruce (Picea sitchensis). The modeling algorithm Maxent and the Worldclim predictor set have been used to compute niche projections under two emission scenarios (A1B & A2A) based on three general circulation models (CSIRO, CCCMA & HADCM3). The shapefiles are derived from gridded model outputs with a grid cell resolution of 30 arc-seconds.
thumbnail
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical...
thumbnail
Winter (January – March) precipitation (mm) averaged over 2046-2065 from the general circulation model Hadley CM3 (Gordon et al. 2000, Pope et al. 2000) downscaled to a grid cell size of 10 km x 10km. References: Gordon C., C. Cooper , C.A. Senior, H. Banks, J.M. Gregory, T.C. Johns , J.F.B. Mitchell, and R.A. Wood. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. Pope, V.D., M.L. Gallani, P.R. Rowntree, and R.A. Stratton. 2000. The impact of new physical parameterisations in the Hadley Centre climate model – HadAM3. Clim Dyn 16:123–146.
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
Using the simple anomaly method (modifying a historical baseline with differences or ratios projected by General Circulation Models), scientists from the California Academy of Sciences downscaled monthly average temperature and monthly total precipitation from 16 different global circulation models (GCMs). The GCMs were described in the latest Intergovernmental Panel for Climate Change (IPCC 2007) and archived at the WCRP PCMDI (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). Monthly maximum temperature and monthly minimum temperatures were downscaled from the only 6 GCMs that archived these particular variables. Scientists used Worldclim v.1.4 (Hijmans et al 2005) at 5 arc-minute (~10km) spatial grain as the current...
thumbnail
MC1 is a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. It was created to assess the potential impacts of global climate change on ecosystem structure and function at a wide range of spatial scales from landscape to global. The model incorporates transient dynamics to make predictions about the patterns of ecological change. MC1 was created by combining physiologically based biogeographic rules defined in the MAPSS model with a modified version of the biogeochemical model, CENTURY. MC1 includes a fire module, MCFIRE, that mechanistically simulates the occurrence and impacts of fire events. Climate input data sources for this...
thumbnail
The integrity of Amazon forests are currently threatened by climate change, deforestation, and fire. However, it is unclear how these agents of change interact over large spatial and temporal domains and reducing this uncertainty is important for projecting changes in carbon stocks and species biogeography, and could better inform continental scale conservation programs. With this in mind, above ground biomass and tree cover data were produced using the dynamic global vegetation model, LPJmL, with 9 different global climate models (using the SRES A2 emissions storyline) and 2 different deforestation scenarios (from Soares et al.). The existing fire module was modified to include 'escaped fire' associated with deforestation,...
thumbnail
The integrity of Amazon forests are currently threatened by climate change, deforestation, and fire. However, it is unclear how these agents of change interact over large spatial and temporal domains and reducing this uncertainty is important for projecting changes in carbon stocks and species biogeography, and could better inform continental scale conservation programs. With this in mind, above ground biomass and tree cover data were produced using the dynamic global vegetation model, LPJmL, with 9 different global climate models (using the SRES A2 emissions storyline) and 2 different deforestation scenarios (from Soares et al.). The existing fire module was modified to include 'escaped fire' associated with deforestation,...
thumbnail
The integrity of Amazon forests are currently threatened by climate change, deforestation, and fire. However, it is unclear how these agents of change interact over large spatial and temporal domains and reducing this uncertainty is important for projecting changes in carbon stocks and species biogeography, and could better inform continental scale conservation programs. With this in mind, above ground biomass and tree cover data were produced using the dynamic global vegetation model, LPJmL, with 9 different global climate models (using the SRES A2 emissions storyline) and 2 different deforestation scenarios (from Soares et al.). The existing fire module was modified to include 'escaped fire' associated with deforestation,...
thumbnail
The integrity of Amazon forests are currently threatened by climate change, deforestation, and fire. However, it is unclear how these agents of change interact over large spatial and temporal domains and reducing this uncertainty is important for projecting changes in carbon stocks and species biogeography, and could better inform continental scale conservation programs. With this in mind, aboveground biomass and tree cover data were produced using the dynamic global vegetation model, LPJmL, with 9 different global climate models (using the SRES A2 emissions storyline) and 2 different deforestation scenarios (from Soares et al.). The existing fire module was modified to include 'escaped fire' associated with deforestation,...
thumbnail
The integrity of Amazon forests are currently threatened by climate change, deforestation, and fire. However, it is unclear how these agents of change interact over large spatial and temporal domains and reducing this uncertainty is important for projecting changes in carbon stocks and species biogeography, and could better inform continental scale conservation programs. With this in mind, aboveground biomass and tree cover data were produced using the dynamic global vegetation model, LPJmL, with 9 different global climate models (using the SRES A2 emissions storyline) and 2 different deforestation scenarios (from Soares et al.). The existing fire module was modified to include 'escaped fire' associated with deforestation,...
thumbnail
The integrity of Amazon forests are currently threatened by climate change, deforestation, and fire. However, it is unclear how these agents of change interact over large spatial and temporal domains and reducing this uncertainty is important for projecting changes in carbon stocks and species biogeography, and could better inform continental scale conservation programs. With this in mind, aboveground biomass and tree cover data were produced using the dynamic global vegetation model, LPJmL, with 9 different global climate models (using the SRES A2 emissions storyline) and 2 different deforestation scenarios (from Soares et al.). The existing fire module was modified to include 'escaped fire' associated with deforestation,...


map background search result map search result map Baseline and predicted future climate niches of Sitka Spruce (Picea sitchensis) based on three general circulation models and two emission scenarios Simulated PNW biomass consumed (g C/m2) under MIROC 3.2 medres A2 (2070-2099 average) Mean winter (January – March) precipitation, 2046-2065, Hadley CM3 A1fi, 10 km resolution Calculated change (Celsius) in seasonal temperature maximum (Fall: 2080-2099), under B1 emission scenario Calculated change (Celsius) in seasonal temperature minimum (Winter: 2020-2039), under B1 emission scenario Calculated change (mm) in seasonal precipitation average (Winter: 2060-2079), under B1 emission scenario Calculated change (Celsius) in seasonal temperature maximum (Summer: 2020-2039), under A2 emission scenario Calculated change (Celsius) in seasonal temperature maximum (Spring: 2080-2099), under A2 emission scenario Calculated change (Celsius) in seasonal temperature average (Summer: 2020-2039), under A2 emission scenario Calculated change in seasonal precipitation average (Summer: 2080-2099), under A2 emission scenario Calculated change (mm) in seasonal precipitation average (Spring: 2060-2079), under A2 emission scenario Vegetation Type for the United States and Canada Simulated for Historical data for the years 1961-1990 by the MC1 Model (NA8K version) Percent change in above ground tree cover for the Amazon Basin under UKMO HADCM3 climate and GOVernance deforestation scenarios with no fire (2020s) Percent change in above ground tree cover for the Amazon Basin under UKMO HADCM3 climate scenario and current deforestation with no fire (2080s) Percent change in above ground tree cover for the Amazon Basin under MPI ECHAM 5 climate and GOVernance deforestation scenarios with fire (2020s) Aboveground biomass (Mg C/ha) for the Amazon Basin under UKMO HADGEM1 climate, no deforestation, and no fire scenarios (2040s) Aboveground biomass (Mg C/ha) for the Amazon Basin under UKMO HADGEM1 climate, no deforestation, and fire scenarios (2060s) Aboveground biomass (Mg C/ha) for the Amazon Basin under UKMO HADGEM1 climate, current deforestation (BAU), and fire scenarios (2080s) Simulated PNW biomass consumed (g C/m2) under MIROC 3.2 medres A2 (2070-2099 average) Mean winter (January – March) precipitation, 2046-2065, Hadley CM3 A1fi, 10 km resolution Percent change in above ground tree cover for the Amazon Basin under UKMO HADCM3 climate and GOVernance deforestation scenarios with no fire (2020s) Percent change in above ground tree cover for the Amazon Basin under UKMO HADCM3 climate scenario and current deforestation with no fire (2080s) Percent change in above ground tree cover for the Amazon Basin under MPI ECHAM 5 climate and GOVernance deforestation scenarios with fire (2020s) Aboveground biomass (Mg C/ha) for the Amazon Basin under UKMO HADGEM1 climate, no deforestation, and no fire scenarios (2040s) Aboveground biomass (Mg C/ha) for the Amazon Basin under UKMO HADGEM1 climate, no deforestation, and fire scenarios (2060s) Aboveground biomass (Mg C/ha) for the Amazon Basin under UKMO HADGEM1 climate, current deforestation (BAU), and fire scenarios (2080s) Baseline and predicted future climate niches of Sitka Spruce (Picea sitchensis) based on three general circulation models and two emission scenarios Vegetation Type for the United States and Canada Simulated for Historical data for the years 1961-1990 by the MC1 Model (NA8K version) Calculated change (mm) in seasonal precipitation average (Winter: 2060-2079), under B1 emission scenario Calculated change (Celsius) in seasonal temperature average (Summer: 2020-2039), under A2 emission scenario Calculated change in seasonal precipitation average (Summer: 2080-2099), under A2 emission scenario Calculated change (mm) in seasonal precipitation average (Spring: 2060-2079), under A2 emission scenario Calculated change (Celsius) in seasonal temperature maximum (Fall: 2080-2099), under B1 emission scenario Calculated change (Celsius) in seasonal temperature minimum (Winter: 2020-2039), under B1 emission scenario Calculated change (Celsius) in seasonal temperature maximum (Summer: 2020-2039), under A2 emission scenario Calculated change (Celsius) in seasonal temperature maximum (Spring: 2080-2099), under A2 emission scenario