Skip to main content
Advanced Search

Filters: Tags: Climate change (X) > Categories: Project (X)

373 results (37ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
1) Improve predictions of streamflow at ungaged basins, and 2) understanding the causes of streamflow changes due to human changes to the environment, and 3) establish biological-flow relations.
thumbnail
We will develop a set of linked models to help predict the effects of climate change on rivers and endangered species. These will include watershed- and reach-scale models to predict streamflow, water temperatures, and other fish habitat metrics under various climatic scenarios for the reaches used by species listed under the Endangered Species Act (ESA), plus a combined bioenergetics and life-cycle model (to be done by the U.S. Geological Survey [USGS]) to assess the impact of these factors on fish growth, reproduction, and survival. We propose to test the model framework at a site on the Methow River, Washington, to explore additional opportunities for collaboration and model development.
thumbnail
Rate of global biodiversity loss increased significantly during the 20th century associated with human environmental alterations. Specifically, mismanagement of freshwater resources contributed to historical and contemporary loss of stream-dwelling fish diversity and will likely play a role in determining the persistence of species in the future. We present a mechanistic pathway by which human alteration of streams has caused the decline of a unique reproductive guild of Great Plains stream-dwelling fishes, and suggest how future climate change might exacerbate these declines. Stream fragmentation related to impoundments, diversion dams and stream dewatering are consequences of increasing demand for freshwater resources...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, AR-04, CATFISHES/MINNOWS, CO-03, CT-04, All tags...
thumbnail
We propose to use long-term fish-population data from a relict reach of the Pecos River, New Mexico to assess population dynamics of imperiled prairie-river minnows, including Arkansas River shiner. Development of viable management strategies requires basic understanding of population ecology. Rigorous, quantitative ecological methods can be used to analyze continuous, long-term demographic data, but such data are rarely available for imperiled, non-game fishes. Data available for the Pecos River provide a unique opportunity to apply quantitative methods to prairie-river minnow conservation and management. Analyses proposed here would determine (1) whether population regulation is density dependent or flow-regime...
Using long-term data records, this project is focused on two problems of importance to water resources managers. First, long-term streamflow records are being used to a) identify broad regional to national trends in floods and low-flows and relate them to possible causes (climate change, water management changes, land-cover changes, and ground-water level change) and b) determine whether there are patterns that relate to watershed size or climate characteristics. It is often stated in the popular press and in official publications on global climate change that we can expect increased variability, including larger and/or more frequent floods, and deeper and longer droughts, as a result of greenhouse warming. This...
thumbnail
Northeastern boreal forests are an important habitat type for many wildlife species, including migratory birds and moose. These animals play vital roles in the boreal forest ecosystem, are a source of pleasure for bird and wildlife watchers, and contribute to tourism revenue for many communities. However, moose and migratory birds are thought to be particularly vulnerable to the impacts of climate change. For example, in New York’s Adirondack Park system, five species of boreal birds have shown occupancy declines of 15% or more. Meanwhile, moose are threatened by winter ticks that thrive in warmer climates and spread disease. A 2018 New York Department of Environmental Conservation (NYDEC) report found that there...
thumbnail
The Jago, Okpilak, and Hulahula rivers in the Arctic are heavily glaciated waterways that are important for fish and wildlife as well as human activities including the provision of food, recreation, and, potentially, resource extraction on the coastal plain. If current glacial melting trends continue, most of the ice in these rivers will disappear in the next 50-100 years. Because of their importance to human and natural communities, it is critical to understand how these rivers and their surrounding environments will be affected by climate change and glacier loss. The overarching goal of this project was to research (1) the amount of river water, sediment, nutrients, and organic matter in the Jago, Okpilak, and...
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
thumbnail
Assessing the impact of flow alteration on aquatic ecosystems has been identified as a critical area of research nationally and in the Southeast U.S. This project aimed to address the Ecohydrology Priority Science Need of the SE CSC FY2012 Annual Science Work Plan by developing an inventory and evaluation of current efforts and knowledge gaps in hydrological modeling for flow-­‐ecology science in global change impact studies across the Southeast. To accomplish this goal, we completed a thorough synthesis and evaluation of hydrologic modeling efforts in the Southeast region (including all states of the Southeastern Association of Fish and Wildlife Agencies (SEAFWA) including Alabama, Arkansas, Florida, Georgia, Kentucky,...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...
thumbnail
The USGS National Climate Change and Wildlife Science Center (NCCWSC), as part of the work of the Interagency Land Management Adaptation Group (ILMAG), initiated a project in 2013 to develop plans for a searchable, public registry on climate change vulnerability assessments. Member agencies from the USGCRP Adaptation Science Work Group, the Association of Fish and Wildlife Agencies (AFWA), and several NGO’s also contributed. Vulnerability assessments are important for identifying resources that are most likely to be affected by climate change and providing insights on why certain resources are vulnerable. Consequently, they provide valuable information for informing climate change adaptation planning. CRAVe allows...
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
The Southeastern U.S. spans broad ranges of physiographic settings and contains a wide variety of aquatic systems that provide habitat for hundreds of endemic aquatic species that pose interesting challenges and opportunities for managers of aquatic resources, particularly in the face of climate change. For example, the Southeast contains the southernmost populations of the eastern brook trout and other cold-water dependent species. Climate change is predicted to increase temperatures in the South and is likely to have a substantial effect on extant populations of cold-water biota. Thus, aquatic managers are tasked with developing strategies for preserving cold-water dependent biota, such as eastern brook trout,...
thumbnail
The Gulf of Alaska is one of the most productive marine ecosystems on Earth, supporting salmon fisheries that alone provide nearly $1 billion per year in economic benefits to Southeast Alaska. Glaciers are central to many of the area’s natural processes and economic activities, but the rates of glacier loss in Alaska are among the highest on Earth, with a 26-36 percent reduction in total volume expected by the end of the century. This project brought together scientists and managers at a workshop to synthesize the impacts of glacier change on the region’s coastal ecosystems and to determine related research and monitoring needs. Collected knowledge shows that melting glaciers are expected to have cascading effects...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
We propose a collaborative project with the USGS, Wyoming State Climate Office, USFWS, USFS, and the NPS whereby we will assemble and maintain long-term records of climate from key stations in and around the Great Northern LCC and subject these records to a rigorous series of QA/QC procedures. Where appropriate we will use best available practices to infill missing data, and we will develop station histories (e.g., details of station moves, instrumentation changes, etc.) as a context for interpreting these records. We will then rigorously analyze patterns of long-term (50-100 years) variability and trends in these datasets, and provide summaries designed to meet the needs of non-climate specialists working in the...
thumbnail
There is a need to understand how alteration of physical processes on the Rio Grande River have impacted aquatic biota and their habitats, and a need to predict potential future effects of climate change on biotic resources in order to prescribe research and management activities that will enhance conservation of aquatic species. We propose a project with the goal of developing monitoring recommendations and identifying research needs for aquatic ecological resources in the Big Bend region of the Rio Grande. This goal will be targeted by synthesizing and analyzing available data and literature for aquatic species in the project region. In particular, we will work to develop time series of abundance and population...
thumbnail
Understanding the physiological impacts of climate change on arid lands species is a critical step towards ensuring the resilience and persistence of such species under changing temperature and moisture regimes. Varying degrees of vulnerability among different species will largely determine their future distributions in the face of climate change. Studies have indicated that Northern Mexico and the Southwestern United States are likely to become climate change hotspots, experiencing significantly drier and warmer average conditions by the end of the 21st century. However, relatively few studies have examined specifically the physiological effects of climate change on species inhabiting this region. This manuscript...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
Determining which species, habitats, or ecosystems are most vulnerable to climate change enables resource managers to better set priorities for conservation action. To address the need for information on vulnerability, this research project aimed to leverage the expertise of university partners to inform the North Central Climate Science Center on how to best assess the vulnerability of elements of biodiversity to climate and land use change in order to inform the development and implementation of management options. Outcomes from this activity were expected to include 1) a framework for modeling vegetation type and species response to climate and land use change, 2) an evaluation of existing alternative vegetation...
thumbnail
Maintaining the native prairie lands of the Northern Great Plains (NGP), which provide an important habitat for declining grassland species, requires anticipating the effects of increasing atmospheric carbon dioxide (CO2) concentrations and climate change on the region’s vegetation. Specifically, climate change threatens NGP grasslands by increasing the potential encroachment of native woody species into areas where they were previously only present in minor numbers. This project used a dynamic vegetation model to simulate vegetation type (grassland, shrubland, woodland, and forest) for the NGP for a range of projected future climates and relevant management scenarios. Comparing results of these simulations illustrates...


map background search result map search result map Evaluating Climate-Induced Runoff and Temperature Change on Stream Habitat Metrics for Endangered or Threatened Fish - BOR Project FY2011 Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Improving Projections of Hydrology in the Pacific Northwest USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems based on Future Climate Projections Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Evaluating the Use of Models for Projecting Future Water Flow in the Southeast A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Consequences of stream fragmentation and climate change for rare Great Plains fishes Population Management of Prairie-River Minnows Understanding Observational, Proxy, and Modeled Climate Data: Outreach, Training, and Support for Managers and Scientists Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability Ecological changes in aquatic communities in the Big Bend reach of the Rio Grande: Synthesis and future monitoring needs Physiological Effects of Climate Change on Species within the Desert LCC Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Evaluating Climate-Induced Runoff and Temperature Change on Stream Habitat Metrics for Endangered or Threatened Fish - BOR Project FY2011 Ecological changes in aquatic communities in the Big Bend reach of the Rio Grande: Synthesis and future monitoring needs Integrating Climate Change Research and Planning to Inform Wildlife Conservation in the Boreal Forests of the Northeastern U.S. Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Population Management of Prairie-River Minnows The Impacts of Glacier Change on the Jago, Okpilak, and Hulahula Rivers in the Arctic Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Consequences of stream fragmentation and climate change for rare Great Plains fishes Projecting the Future Encroachment of Woody Vegetation into Grasslands of the Northern Great Plains by Simulating Climate Conditions and Possible Management Actions Improving Projections of Hydrology in the Pacific Northwest USGS-USFS Partnership to Help Managers Evaluate Conservation Strategies for Aquatic Ecosystems based on Future Climate Projections From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Physiological Effects of Climate Change on Species within the Desert LCC A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Assessing the Vulnerability of Vegetation to Future Climate in the North Central U.S. Understanding Observational, Proxy, and Modeled Climate Data: Outreach, Training, and Support for Managers and Scientists Evaluating the Use of Models for Projecting Future Water Flow in the Southeast Development of the Climate Registry for the Assessment of Vulnerability (CRAVe): A Searchable, Public Online Tool for Understanding Species and Habitat Vulnerability