Skip to main content
Advanced Search

Filters: Tags: Climate Dynamics (X)

4 results (120ms)   

View Results as: JSON ATOM CSV
A detailed study of the climatic significance of δ18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of δ18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation “amount effect” and results in a poor δ18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects...
A detailed study of the climatic significance of δ18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of δ18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation “amount effect” and results in a poor δ18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects...
A detailed study of the climatic significance of δ18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of δ18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation “amount effect” and results in a poor δ18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects...
Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ∼0.1°C, similar to that occurring with the interannual signal (i.e., El Niño–Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabatic heat storage (DHS) budget from 1975 to 2000. We find the anomalous...