Skip to main content
Advanced Search

Filters: Tags: Chicago Sanitary and Ship Canal (X)

38 results (141ms)   

View Results as: JSON ATOM CSV
thumbnail
In 2016, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and six fully-loaded barges, transited the EDBS in both upstream-bound (n = 23) and downstream-bound (n = 22) directions. A 3,000 kHz SonTek Argonaut SW Acoustic Doppler Velocity Meter (ADVM) was mounted on the barge at the position of the rake-to-box junction. The ADVM faced outward from the side...
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been layer-averaged over the lower portion of the water column (0 to 4 meters above the bed). These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal by the U.S. Fish and Wildlife Service (USFWS). Data were processed using the Velocity Mapping Toolbox (Parsons and others, 2013). NOTE: Any data assigned...
thumbnail
In 2016, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and six fully-loaded barges, transited the EDBS in both upstream-bound (n = 23) and downstream-bound (n = 22) directions. A 1,200 kHz Teledyne RDI Channel Master Acoustic Doppler Velocity Meter (ADVM) was mounted on the barge at the position of the rake-to-box junction. The ADVM faced outward from...
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been depth-averaged over the entire measured portion of the water column and temporally averaged over 5-second intervals to reduce noise. These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal (CSSC) by the U.S. Fish and Wildlife Service (USFWS). Data were processed using the Velocity Mapping Toolbox...
thumbnail
Two non-native bigheaded carp species have invaded the Illinois River system and are a potential threat to the Great Lakes ecosystem. Discharges from industry, wastewater treatment plants, and urban and agricultural runoff, may be a factor contributing to the stalling of the upstream movement of the bigheaded carp population front near Illinois Waterway mile 278. In 2015, the U.S. Geological Survey collected 4 sets of water samples under a range of seasonal and hydrologic conditions from 3 locations upstream and 4 locations downstream from river mile 278 using a Lagrangian-style sampling strategy. Water samples were analyzed for over 639 constituents of which 280 were detected at least once, including many anthropogenic...
thumbnail
In August 2015, water velocities around a fully-loaded commercial barge tow were measured as the barge tow traveled upstream through the Chicago Sanitary and Ship Canal from a starting position in Lockport Pool, and passed through the Electric Dispersal Barrier System at river mile (RM) 296 near Romeoville, IL. Velocity measurements were made in and alongside the gap formed by the junction between the boxed stern of a rake hopper barge and the raked bow of a rake tanker barge (herein referred to as the rake-to-box junction gap) using two SonTek Argonaut SW 3kHz acoustic Doppler velocity meters (ADVM). One ADVM was mounted 0.091 meters below the water surface, facing downward in the center of the rake-to-box junction...
thumbnail
In 2016, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and six fully-loaded barges, transited the EDBS in both upstream-bound (n = 23) and downstream-bound (n = 22) directions. A 600 kHz Teledyne RDI Channel Master Acoustic Doppler Velocity Meter (ADVM), was mounted on the west canal wall at a depth of approximately 5.5 feet (1.7 meters), as measured...
thumbnail
These data were collected using a 600 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 50 centimeter bins from a moving boat. The data were georeferenced with a Trimble Ag132 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been depth-averaged over the entire measured portion of the water column and temporally averaged over 5-second intervals to reduce noise. These data were collected during water-quality surveys of the right bank of the Chicago Sanitary and Ship Canal (CSSC) and include low-velocity regions of the canal such as barge slips in addition to the main channel. Data were processed using the Velocity Mapping Toolbox (Parsons and others,...
thumbnail
In 2017, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and fully-loaded barges, transited the EDBS in both upstream-bound (n = 65) and downstream-bound (n = 66) directions. A 600 kHz Teledyne RDI Channel Master Acoustic Doppler Velocity Meter (ADVM), was mounted on the west canal wall at a depth of approximately 5.5 feet (1.7 meters), as measured on...
thumbnail
Data include Rhodamine WT dye concentrations measured every 3 or 10 minutes by means of Turner Designs C-3 and C-6 fluorometers with internal dataloggers at three fixed locations on the Des Plaines River (DPR) (DP-1, DP-2, and DP-3); in three groundwater monitoring wells (ACL-1, WP10-85, and WP9-275); and at two fixed locations on the Chicago Sanitary and Ship Canal (CSSC) (SC-1 and SC-2) (see included Google Earth file AllDeployments_Locations.kmz). The detection limit for these fluorometers is reported to be 0.01 parts per billion (ppb). However, the fluorometer readings were affected by turbidity, and readings of less than about 1.0 part per billion (ppb) were considered to have been influenced by turbidity and...
thumbnail
In 2017, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and fully-loaded barges, transited the EDBS in both upstream-bound (n = 65) and downstream-bound (n = 66) directions. The configuration of the barges for each run is provided in 2017_Run_Information.csv. A 3000 kHz SonTek Argonaut SW Acoustic Doppler Velocity Meter (ADVM), was mounted on the west...
thumbnail
This dataset contains a summary of the characteristics of near-surface flow reversals at the Electric Dispersal Barrier System (EDBS) on the Chicago Sanitary and Ship Canal at Romeoville, Illinois during Water Year 2018 (October 1, 2017, to September 30, 2018). Water velocity near the water surface is measured on a five-minute sampling interval in the EDBS using a CODAR RiverSonde® surface velocity radar at nine measurement cells on a cross section near USGS streamgage number 05536995 (Chicago Sanitary and Ship Canal at Romeoville, IL). Flow reversal events are analyzed for each individual cell as well as for the average velocity over all nine cells. For the analysis of individual cells, a flow reversal event is...
thumbnail
A motion-activated video camera documented the passage of commercial tows through the Electric Dispersal Barrier System (EDBS) on the Chicago Sanitary and Ship Canal at Romeoville, Illinois, over the period October 1, 2018, to July 3, 2019. Videos were manually screened and analyzed to extract tow characteristics including date and time of video recording, number and configuration of barges, loading of barges (loaded, unloaded, or mixed), direction of travel, and bow type (rake or box). Only commercial vessels were logged and no identifying data about the tow vessels were maintained. All videos triggered by recreational vessels or other objects were permanently removed from the database during analysis. Any periods...
thumbnail
The study at Lemont replicated and expanded upon seismic data collected at that location in 2011 as well as evaluated the pressure field created in the water by the water gun. The replicate data were collected with the water gun placements and input pressure identical to the 2011 study, but added static underwater pressure monitoring. Two 80-in³ water guns were suspended below a platform at depths of 4 and 14 feet. Pressure values were lower when only the gun suspended at 4 feet was fired as compared to firing the single gun at 14 feet and both guns simultaneously, with the latter two producing similar pressures. Data were collected to assess the pressure field produced by two 80-in³ water guns suspended at a depth...
thumbnail
These data files include georeferenced water-quality data with associated time stamps (Central Standard Time) for basic water-quality parameters as measured by a towed multiparameter sonde (YSI 6920 sonde) from a manned boat in the Chicago Sanitary and Ship Canal. Data were collected on February 25-27, 2010, and again on March 2-3, 2010. The data collected in February 2010 had the sonde on a fixed mount about 1 foot below the surface. The data collected in March 2010 had the sonde on a towed cable about 7-9 feet below the surface. All data have been edited and reviewed. Omitted data have been flagged with a data value of -9999 in the data files.
thumbnail
The study at Lemont replicated and expanded upon seismic data collected at that location in 2011 as well as evaluated the pressure field created in the water by the water gun. The replicate data were collected with the water gun placements and input pressure identical to the 2011 study, but added static underwater pressure monitoring. Two 80-in³ water guns were suspended below a platform at depths of 4 and 14 feet. Pressure values were lower when only the gun suspended at 4 feet was fired as compared to firing the single gun at 14 feet and both guns simultaneously, with the latter two producing similar pressures. Data were collected to assess the pressure field produced by two 80-in³ water guns suspended at a depth...
thumbnail
In 2016, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and six fully-loaded barges, transited the EDBS in both upstream-bound (n = 23) and downstream-bound (n = 22) directions. A 600 kHz Teledyne RDI Channel Master Acoustic Doppler Velocity Meter (ADVM), was mounted on the west canal wall at a depth of approximately 5.5 feet (1.7 meters), as measured...
thumbnail
In 2016, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and six fully-loaded barges, transited the EDBS in both upstream-bound (n = 23) and downstream-bound (n = 22) directions. A 3,000 kHz SonTek Argonaut SW Acoustic Doppler Velocity Meter (ADVM), was mounted on the west canal wall at a depth of approximately 5.5 feet (1.7 meters), as measured on August...
thumbnail
In 2017, the U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. Army Corps of Engineers undertook a large-scale interagency field study to determine the influence of commercial barge vessels on the efficacy of the Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) in preventing fish passage. This study included a series of trials in which a tow, consisting of a tug vessel and fully-loaded barges, transited the EDBS in both upstream-bound (n = 65) and downstream-bound (n = 66) directions. Wall-mounted velocity probes were located at (41.6423629, -88.060329). The configuration of the barges for each run, and the time at which the bow and stern of the tow pass the wall-mounted...
thumbnail
Discharge measurements made at U.S. Geological Survey Chicago Sanitary and Ship Canal near Lemont, Illinois, streamgage (05536890) between 2005 and 2013 were reviewed and manually processed using QRev v3.12. Discharge was measured using Acoustic Doppler Current Profilers (ADCPs) deployed from a moving boat according to the procedures described in Mueller and others (2013). QRev generates an extensible markup language file (XML) that provides information on measurement characteristics (Mueller, 2016a,b). Data from these XML files were exported into a comma-separated values (CSV) table to create a summary of measurement information. This CSV table also indicates which measurements were used in the development of index-velocity...


map background search result map search result map Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (March 2-3, 2010) Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (December 7, 2010) Spatial distribution of layer-averaged velocity (0-4 m above the bed) measured in the ACL slip on the Chicago Sanitary and Ship Canal near Lemont, IL (December 7, 2010) Water-quality distribution in the Chicago Sanitary and Ship Canal, USGS towed multiparameter sonde, Daily tow data files (Feb. 25-27, 2010 and March 2-3, 2010) Rhodamine WT dye concentrations measured at fixed locations in the Des Plaines River and Chicago Sanitary and Ship Canal, Chicago, IL (November 14-29, 2011) Hydroacoustic measurements of velocities in and near the rake-to-box junction gap of a moving, fully-loaded commercial barge tow Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Ambient Velocity Measurements Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Barge Mounted Channel Master Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Barge Mounted Argonaut SW Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Wall Mounted Channel Master Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Wall Mounted Argonaut SW Discharge measurements at U.S. Geological Survey streamgage 05536890 Chicago Sanitary and Ship Canal near Lemont, Illinois, 2005-2013 Chicago Sanitary and Ship Canal near Lemont, Illinois Acceleration Data Chicago Sanitary and Ship Canal near Lemont, Illinois Hydrophone Data Water velocity profiling at the U.S. Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully-loaded commercial tows in August 2017: Wall Mounted Argonaut SW Water velocity profiling at the U.S. Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully-loaded commercial tows in August 2017: Ambient Velocity Measurements Water velocity profiling at the U.S. Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully-loaded commercial tows in August 2017: Run Information Summary of the characteristics of near-surface flow reversals at the Electric Dispersal Barrier System on the Chicago Sanitary and Ship Canal at Romeoville, Illinois, October 1, 2017, to September 30, 2018 Laboratory results for anthropogenic bioactive chemicals in the Illinois Waterway upstream and downstream of the bigheaded carp population front (2015; ver. 2.0, March 2020) Summary of the characteristics of commercial tows passing through the Electrical Dispersal Barrier System on the Chicago Sanitary and Ship Canal at Romeoville, Illinois, October 1, 2018, to July 3, 2019 Discharge measurements at U.S. Geological Survey streamgage 05536890 Chicago Sanitary and Ship Canal near Lemont, Illinois, 2005-2013 Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Ambient Velocity Measurements Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Barge Mounted Channel Master Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Barge Mounted Argonaut SW Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Wall Mounted Channel Master Velocity profiling at the US Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully loaded commercial tows in August 2016: Wall Mounted Argonaut SW Water velocity profiling at the U.S. Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully-loaded commercial tows in August 2017: Wall Mounted Argonaut SW Water velocity profiling at the U.S. Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully-loaded commercial tows in August 2017: Ambient Velocity Measurements Water velocity profiling at the U.S. Army Corps of Engineers Electric Dispersal Barrier in the Chicago Sanitary and Ship Canal during passage of fully-loaded commercial tows in August 2017: Run Information Summary of the characteristics of commercial tows passing through the Electrical Dispersal Barrier System on the Chicago Sanitary and Ship Canal at Romeoville, Illinois, October 1, 2018, to July 3, 2019 Summary of the characteristics of near-surface flow reversals at the Electric Dispersal Barrier System on the Chicago Sanitary and Ship Canal at Romeoville, Illinois, October 1, 2017, to September 30, 2018 Chicago Sanitary and Ship Canal near Lemont, Illinois Acceleration Data Chicago Sanitary and Ship Canal near Lemont, Illinois Hydrophone Data Spatial distribution of layer-averaged velocity (0-4 m above the bed) measured in the ACL slip on the Chicago Sanitary and Ship Canal near Lemont, IL (December 7, 2010) Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (March 2-3, 2010) Rhodamine WT dye concentrations measured at fixed locations in the Des Plaines River and Chicago Sanitary and Ship Canal, Chicago, IL (November 14-29, 2011) Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (December 7, 2010) Water-quality distribution in the Chicago Sanitary and Ship Canal, USGS towed multiparameter sonde, Daily tow data files (Feb. 25-27, 2010 and March 2-3, 2010) Laboratory results for anthropogenic bioactive chemicals in the Illinois Waterway upstream and downstream of the bigheaded carp population front (2015; ver. 2.0, March 2020)