Skip to main content
Advanced Search

Filters: Tags: Carbon balance (X)

11 results (82ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response...
Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils. In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12757/abstract): The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice-wedge polygonal tundra that spans drained thaw-lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw-lake cycle; and (ii) low, moderate,...
thumbnail
Our research focuses on assessing the components of the Net Ecoystem Carbon Balance using the eddy covariance approach to measure atmospheric fluxes of heat, energy, carbon dioxide and methane and testing equipment and techniques to measure the tidal exchange of dissolved organic (DOC) and inorganic carbon (DIC). The atmospheric flux tower is located south of Solano Land Trust's Rush Ranch, a working ranch encompassing 2,070 acres of marsh and rolling grasslands that provides both recreational and educational experiences for the public (http://www.solanolandtrust.org/RushRanch.aspx). Lateral fluxes are being collected at the San Francisco Bay National Estuarine Research Reserve First Mallard water quality station...
thumbnail
Scenario-based simulation model projections of land use change, ecosystem carbon stocks, and ecosystem carbon fluxes for the State of California from 2001-2101 using the SyncroSim software framework, see http://doc.syncrosim.com/index.php?title=Reference_Guide for software documentation. We explored four land-use scenarios and two radiative forcing scenarios (e.g. Representative Concentration Pathways; RCPs) as simulated by four earth system models (i.e. climate models). Results can be used to understand the drivers of change in ecosystem carbon storage over short, medium, and long (e.g. 100 year) time intervals. See Sleeter et al. (2019) Global Change Biology (doi: 10.1111/gcb.14677) for detailed descriptions of...
thumbnail
This data series provides tabular output from a series of modeling simulations for the State of California. The methods and results of this research are described in detail in Sleeter et al. (2019). We used the LUCAS model to project changes in ecosystem carbon balance resulting from land use and land use change, climate change, and ecosystem disturbances such as wildfire and drought. The model was run at a 1-km spatial resolution on an annual timestep. We simulated 32 unique scenarios, consisting of 4 land-use scenarios and 2 radiative forcing scenarios as simulated by 4 global climate models. For each scenario, we ran 100 Monte Carlo realizations of the model. Additional details describing the modeling effort...
The environmental costs and bene®ts of producing bioenergy crops can be measured both in terms of the relative e€ects on soil, water and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Department of Energy's Bioenegy Feedstock Develop- ment Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a per- ennial grass species, switchgrass (Panicum virgatum). The choice of switchgrass as a model bioenergy species was based on its high...
thumbnail
Tabular data output from a series of modeling simulations for the seven main Hawaiian Islands. We used the LUCAS model to project changes in ecosystem carbon balance resulting from land use, land use change, climate change, and wildfire. The model was run at a 250-m spatial resolution on an annual timestep from the years 2010 to 2100. We simulated four unique scenarios, consisting of all combinations of two land-use scenarios and two radiative forcing scenarios. For each scenario, we ran 30 Monte Carlo realizations of the model. Results presented here have been aggregated from the individual cell level and summarized by island or vegetation class. Model input data and the R code used to generate it, as well as R...
The environmental costs and bene®ts of producing bioenergy crops can be measured both in terms of the relative e€ects on soil, water and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Department of Energy's Bioenegy Feedstock Develop- ment Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a per- ennial grass species, switchgrass (Panicum virgatum). The choice of switchgrass as a model bioenergy species was based on its high...


    map background search result map search result map Suisun Marsh, CA:  Net Ecosystem Carbon Balance Alaska Land Carbon Assessment USGS Data Release: Land change and carbon balance scenario projections for the State of California - model output USGS Data Release: Land change and carbon balance scenario projections for the State of California - model Land change and carbon balance projections for the Hawaiian Islands Suisun Marsh, CA:  Net Ecosystem Carbon Balance Land change and carbon balance projections for the Hawaiian Islands USGS Data Release: Land change and carbon balance scenario projections for the State of California - model output USGS Data Release: Land change and carbon balance scenario projections for the State of California - model Alaska Land Carbon Assessment