Skip to main content
Advanced Search

Filters: Tags: COASTAL PROCESSES (X)

517 results (288ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
Well-established conservation planning principles and techniques framed by geodesign were used to assess the restorability of areas that historically supported coastal wetlands along the U.S. shore of Saginaw Bay. The resulting analysis supported planning efforts to identify, prioritize, and track wetland restoration opportunity and investment in the region. To accomplish this, publicly available data, criteria derived from the regional managers and local stakeholders, and geospatial analysis were used to form an ecological model for spatial prioritization.
Understanding the causes of relative sea level rise requires knowledge of changes to both land (uplift and subsidence) and sea level. However, measurements of coastal uplift or subsidence are almost completely lacking in western Alaska. This project provided precise measurements of prioritized benchmarks across the Western Alaska geography, improving the network of published tidal benchmark elevations, allowing for tidal datum conversion in more places, and providing a necessary component for improved inundation studies in coastal communities and low-lying areas. The project’s map of vertical velocities (uplift/subsidence) of western Alaska (see ‘Final Project Report’ & ‘Vertical Velocity Map’, below) will be combined...
thumbnail
Understanding the causes of relative sea level rise requires knowledge of changes to both land (uplift and subsidence) and sea level. However, measurements of coastal uplift or subsidence are almost completely lacking in western Alaska. This project provided precise measurements of prioritized benchmarks across the Western Alaska geography, improving the network of published tidal benchmark elevations, allowing for tidal datum conversion in more places, and providing a necessary component for improved inundation studies in coastal communities and low-lying areas. The project’s map of vertical velocities (uplift/subsidence) of western Alaska (see ‘Final Project Report’ & ‘Vertical Velocity Map’, below) will be combined...
‚ÄčThis project takes advantage of an existing helicopter platform on St. Lawrence that will be used to collect ShoreZone imagery of the island. This project is leveraging contributions by the Oil Spill Recovery Institute, the Alaska Department of Natural Resources, the Alaska Department of Environmental Conservation, and NOAA Fisheries to collect imagery in the summer of 2013. The ABSI LCC will provided $10K to map the highest priority section of the St. Lawrence Island coastline.The ShoreZone mapping system has been in use since the early 1980s and has been applied to more than 40,000 km of shoreline in Washington and British Columbia. Through partnerships with other agencies and organizations, portions of southeastern...
thumbnail
The goal of this project is to provide a preliminary overview, at a National scale, the relative susceptibility of the Nation's coast to sea- level rise through the use of a coastal vulnerability index (CVI). This initial classification is based upon the variables geomorphology, regional coastal slope, tide range, wave height, relative sea-level rise and shoreline erosion and accretion rates. The combination of these variables and the association of these variables to each other furnish a broad overview of regions where physical changes are likely to occur due to sea-level rise.
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
The numerical simulation of estuarine dynamics requires accurate prediction for the transport of tracers such as temperature and salinity. All numerical models introduce two kinds of tracer mixing: 1) by parameterizing the tracer eddy diffusivity through turbulence models leading to a source of physical mixing and 2) discretization of the tracer advection term that leads to numerical mixing. Both physical and numerical mixing vary with the choice of horizontal advection schemes, grid resolution, and time step. We utilize the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to study the mixing in the model by simulating four idealized cases with three different tracer advection schemes.
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
The compilation of an accurate and contemporary digital shoreline for Alaska is an important step in understanding coastal processes and measuring changes in coastal storm characteristics. Consistent with efforts by the United States National Park Service (NPS) at Bering Land Bridge National Preserve (BELA) and Cape Krusenstern National Monument, high quality, defensible digital shoreline datasets are under development for select coastal parks in the State of Alaska. Near BELA, for the area from Cape Prince of Wales to Cape Espenberg, extended revised shoreline coverage can be produced using true color coastal shoreline imagery to update the boundary demarking the mean high water (MHW) shoreline, which represents...
The western coastline of Alaska spans over 10,000 km of diverse topography ranging from low lying tundra in the north to sharp volcanic relief in the south. Included in this range are areas highly susceptible to powerful storms which can cause coastal flooding, erosion and have many other negative effects on the environment and commercial efforts in the region. In order to better understand the multi-scale and interactive physics of the deep ocean,continental shelf, near shore, and coast, a large unstructured domain hydrodynamic model is being developed using the finite element, free surface circulation code ADCIRC.This model is a high resolution, accurate, and robust computational model of Alaska’s coastal environment...
thumbnail
This data set contains shoreline rate of change statistics for New York State coastal wetlands. Analysis was performed using the Digital Shoreline Analysis System (DSAS), created by U.S. Geological Survey, version 5.0, an extension for ArcMap. A reference baseline was used as the originating point for orthogonal transects cast by the DSAS software. The transects intersect each polyline vector shoreline establishing intersection measurement points, which were then used to calculate the rates of change. End-point rates, calculated by dividing the distance of shoreline movement by the time elapsed between the oldest and the most recent shoreline, were generated for wetlands where fewer than three historic shorelines...
The idealized test domain is utilized to study vertical tracer mixing without the presence of advection terms. The tracer starts to mix under the application of a surface stress. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using Landsat 8 satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated fractional covers and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated fractional cover...


map background search result map search result map Wave Height Data for the Gulf of Mexico Rate of shoreline change statistics for New York State coastal wetlands Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Coastal wetlands from Jamaica Bay to western Great South Bay, New York Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters of landcover, geomorphic setting, substrate type, vegetation density, and vegetation type: Metompkin Island, VA, 2014 Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for the South Shore of MA Standard deviation of the vegetated fraction in coastal wetlands along the U.S. Gulf of Mexico Coast (16-bit GeoTIFF) points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Coastal wetlands from Jamaica Bay to western Great South Bay, New York Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Rhode Island National Wildlife Refuge, RI, 2014 shoreline, inletLines: Shoreline polygons and tidal inlet delineations: Assateague Island, MD & VA, 2014 Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for the South Shore of MA Rate of shoreline change statistics for New York State coastal wetlands Wave Height Data for the Gulf of Mexico Standard deviation of the vegetated fraction in coastal wetlands along the U.S. Gulf of Mexico Coast (16-bit GeoTIFF)