Skip to main content
Advanced Search

Filters: Tags: Alluvial aquifer (X)

3 results (8ms)   

View Results as: JSON ATOM CSV
The δ34S and δ18O values for dissolved sulfate in groundwater are commonly used in aquifer studies to identify sulfate reservoirs and describe biogeochemical processes. The utility of these data, however, often is compromised by mixing of sulfate sources within reservoirs and isotope fractionation during sulfur redox cycling. Our study shows that, after all potential sulfate sources are identified and isotopically characterized, the δ34SSO4 and δ18OSO4 values differentiate processes such as sulfate-source mixing, sulfide oxidation, barite dissolution, and organosulfur decomposition. During bacterial reduction of sulfate, the values reflect kinetic sulfur isotope fractionation and exchange of oxygen isotopes between...
thumbnail
The U.S. Geological Survey, in cooperation with the Lewis and Clark, Lower Elkhorn, Lower Loup, Lower Platte North, Lower Niobrara, Middle Niobrara, Upper Elkhorn, and the Upper Loup Natural Resources Districts, designed a study to refine the spatial and temporal discretization of a previously modeled area. This updated study focused on a 30,000-square-mile area of the High Plains aquifer and constructed regional groundwater-flow models to evaluate the effects of groundwater withdrawal on stream base flow in the Elkhorn and Loup River Basins, Nebraska. The model was calibrated to match groundwater-level and base-flow data from the stream-aquifer system from pre-1940 through 2010 (including predevelopment [pre-1895],...


    map background search result map search result map Water-level and digital data for the Elkhorn and Loup River Basins groundwater flow model, Phase Three Water-level and digital data for the Elkhorn and Loup River Basins groundwater flow model, Phase Three