Skip to main content
Advanced Search

Filters: Tags: 2010 (X) > partyWithName: LCC Network Data Steward (X)

78 results (181ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
For management agencies, there is a growing need to understand (1) how climate change affects and will continue to affect wildlife populations of conservation concern, and (2) how the negative Upper Midwest Great Lakes Landscape Conservation Cooperative Request for Funding 2013 demographic effects of climate change can be mitigated through management strategies. Climate Change Vulnerability Assessment (CCVA) integrates available data and scientific understanding in a transparent process, details assumptions and uncertainties, and ultimately projects population-level responses of target species to future climate change. Climate change is already influencing distributions and abundances of species throughout North...
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2013, Academics & scientific researchers, Academics & scientific researchers, All tags...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
thumbnail
Rate of global biodiversity loss increased significantly during the 20th century associated with human environmental alterations. Specifically, mismanagement of freshwater resources contributed to historical and contemporary loss of stream-dwelling fish diversity and will likely play a role in determining the persistence of species in the future. We present a mechanistic pathway by which human alteration of streams has caused the decline of a unique reproductive guild of Great Plains stream-dwelling fishes, and suggest how future climate change might exacerbate these declines. Stream fragmentation related to impoundments, diversion dams and stream dewatering are consequences of increasing demand for freshwater resources...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, AR-04, CATFISHES/MINNOWS, CO-03, CT-04, All tags...
thumbnail
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables....
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page
thumbnail
Habitat loss and fragmentation are widely recognized as among the most important threats to global biodiversity. New analytical approaches are providing improved ability to predict the effects of landscape change on population connectivity at vast spatial extents. This paper presents an analysis of population connectivity for three species of conservation concern [swift fox (Vulpes velox); lesser prairie-chicken (Tympanuchus pallidicinctus); massasuaga (Sistrurus catenatus)] across the American Great Plains region. We used factorial least-cost path and resistant kernel analyses to predict effects of landscape conditions on corridor network connectivity. Our predictions of population connectivity provide testable...
Categories: Data, Project, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, CO-01, CO-02, CO-03, CO-04, All tags...
thumbnail
The project will utilize a 4.5 million acre study area on the Montana Glaciated Plains. The objectives are to (1) identify environmental conditions and management practices that will maintain habitat for grassland birds but not impact ranching sustainability, and (2) identify areas on the landscape that have the greatest conservation potential for grassland birds. This spatial analysis will provide the framework for a rigorous assessment of management actions on the Montana Glaciated Plains.
thumbnail
Genetic, demographic, and environmental processes affect natural populations synergistically, and understanding their interplay is crucial for the conservation of biodiversity. Stream fishes in metapopulations are particularly sensitive to habitat fragmentation because persistence depends on dispersal and colonization of new habitat but dispersal is constrained to stream networks. Great Plains streams are increasingly fragmented by water diversion and climate change, threatening connectivity of fish populations in this ecosystem. We used seven microsatellite loci to describe population and landscape genetic patterns across 614 individuals from 12 remaining populations of Arkansas darter ( Etheostoma cragini) in...
thumbnail
Species populations are in a state of flux due to the cumulative and interacting impacts of climate change and human stressors across landscapes. Invasive spread, pathogen outbreaks, land-use activities, and especially climate disruption and its associated impacts—severe drought (see Figure 3 or the GPLCC), reduced stream flow, increased wildfire frequency, extended growing season, and extreme weather events—are increasing, and in some cases accelerating. These impacts are outpacing management and conservation responses intended to support trust species and their critical habitats. Our common goal is to craft successful adaptation strategies in the face of these multiple, interacting drivers of environmental change....
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, Academics & scientific researchers, CO-01, CO-02, CO-03, All tags...
thumbnail
Sea-level rise (SLR) is one of the biggest threats to the Hawaiian coastline, and resource managers of coastal wetlands in Hawai‘i must begin planning now for future impacts. The majority of these impacts are expected to occur from 2040 – 2100. PICCC funded research from the University of Hawai’i at Mānoa has provided decision makers with tools to assist in adaptively managing the impacts of SLR at three coastal wetland environments in south Maui, north Maui, and James Campbell National Wildlife Refuge. They also ranked threats on the basis of input from wetland management experts to develop maps of SLR impacts and vulnerability. The researchers concluded that decision makers must quickly act to develop and implement...
This project evaluates the effects of global climate change and sea level rise on estuarine intertidal habitat in the San Francisco Bay and the Pacific Flyway migratory waterbirds that rely on this habitat. Phase 2 of this project is a continuation of work to evaluate the effects of global climate change and sea level rise (SLR) on intertidal shoals in the San Francisco Bay Estuary and the migratory waterbirds that rely on this critically important resource in the Pacific Flyway. The primary objectives are to: 1) use downscaled global climate change models to translate SLR and climate scenarios into habitat quantity predictions through Delft3D and Dflow-FM (unstructured grid) geomorphic modeling; 2) model the response...
thumbnail
This dataset was developed as part of the Designing Sustainble Landscapes project led by Professor Kevin McGarigal of UMass Amherst and sponsored by the North Atlantic Landscape Conservation Cooperative (www.northatlanticlcc.org); for more information about the entire project see: http://www.umass.edu/landeco/research/dsl/dsl.htmlThis dataset was last updated 02/2017. The revised version incorporates the addition of a simplified version of The Nature Conservancy's Northeast lakes and ponds classification, visit https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/freshwater/Pages/Northeast-Lakes.aspx for more details.This dataset represents terrestrial and wetland...
thumbnail
Rapid expansion of cropland threatens grassland ecosystems across western North America and broad-scaleplanning can be a catalyst motivating individuals and agencies to accelerate conservation. Sprague’s Pipit(Anthus spragueii) is an imperiled grassland songbird whose population has been declining rapidly in recent decades.Here, we present a strategic framework for conservation of pipits and their habitat in the northern GreatPlains.We modeled pipit distribution across its million-km2 breeding range in Canada and the U.S.We describefactors shaping distribution, delineate population cores and assess vulnerability to future grassland losses. Pipitsselected landscapes with a high proportion of continuous grassland...
thumbnail
Map drained wetland basins in the PPR of Iowa and complete data set for the eastern (Region 3) of the U.S. Prairie Pothole Regionl. These data form the foundation for a newly launced inititative to develop an “Integrated Conservation Design Strategy for the PPR of Minnesota and Iowa.” This new initiative integrates wildlife habitat, water quality and flood attenuation objectives with wetland restoration potential maps to develop multi-objective wetland restoration plans for landscape-scale watershed.
thumbnail
Comprehensive wetland inventories are an essential tool for wetland management, but developing and maintaining an inventory is expensive and technically challenging. Funding for these efforts has also been problematic. Here we describe a large-area application of a semi-automated processused to update a wetland inventory for east-central Minnesota. The original inventory for this area was the product of a laborintensive, manual photo-interpretation process. The present application incorporated high resolution, multi-spectral imagery from multiple seasons; high resolution elevation data derived from lidar; satellite radar imagery; and other GIS data. Map production combined image segmentation and random forest classification...
thumbnail
This report provides a final update of work performed for the period beginning December 20, 2010 and ending December 31, 2012. The report describes two umbrella projects: (1) to improve fish passage and landscape connectivity for native species and 2) to determine the thermal effects on fish species sensitive to climate change. The work was performed through a partnership led by the Western Transportation Institute at Montana State University and the Bozeman Fish Technology Center (BFTC) of the United States Fish and Wildlife Service. The report is divided into five chapters that provide details on accomplishments to meet specific objectives outlined in our proposal during the period. Several of the projects that...


map background search result map search result map Conservation status, genetics, and population vulnerability of Arkansas darter (Etheostoma cragini) in Colorado Consequences of stream fragmentation and climate change for rare Great Plains fishes Implications of climate change for avian conservation in Great Plains landscapes Climate change and connectivity: Assessing landscape and species vulnerability Iowa Wetland Assessment and Restorable Wetland Inventory:  Improving Wetland Restoration Planning Through Processing of Recently Collected LIDAR data for the Prairie Pothole Region of Iowa Grassland Bird Conservation on Working Landscapes: Spatial analysis linking populations to habitat Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends Decision support for climate change adaptation in the GPLCC: Creating geospatial data products for ecosystem assessments and predictive species modeling Temporal and Spatial Pattern of Sea-level Rise Impacts to Coastal Wetlands and Other Ecosystems Terrestrial and Aquatic Habitat Map (DSLland), Version 3.1, Northeast U.S. Report: Climate Change Vulnerability Assessment for Species of Conservation Concern: Distributions and Demographics Across a Landscape Conservation Cooperative Publication: A Semi-Automated, Multi-Source Data Fusion Update of aWetland Inventory for East-Central Minnesota Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region Fish Passage in Plains and Prairie Waterways report One step ahead of the plow: Using cropland conversion risk to guide Sprague's Pipit conservation in the northern Great Plains Conservation status, genetics, and population vulnerability of Arkansas darter (Etheostoma cragini) in Colorado Temporal and Spatial Pattern of Sea-level Rise Impacts to Coastal Wetlands and Other Ecosystems Iowa Wetland Assessment and Restorable Wetland Inventory:  Improving Wetland Restoration Planning Through Processing of Recently Collected LIDAR data for the Prairie Pothole Region of Iowa A Monitoring Protocol to Assess Wintering Shorebird Population Trends Publication: A Semi-Automated, Multi-Source Data Fusion Update of aWetland Inventory for East-Central Minnesota Grassland Bird Conservation on Working Landscapes: Spatial analysis linking populations to habitat One step ahead of the plow: Using cropland conversion risk to guide Sprague's Pipit conservation in the northern Great Plains Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Consequences of stream fragmentation and climate change for rare Great Plains fishes Implications of climate change for avian conservation in Great Plains landscapes Climate change and connectivity: Assessing landscape and species vulnerability Decision support for climate change adaptation in the GPLCC: Creating geospatial data products for ecosystem assessments and predictive species modeling Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region Fish Passage in Plains and Prairie Waterways report Terrestrial and Aquatic Habitat Map (DSLland), Version 3.1, Northeast U.S. Report: Climate Change Vulnerability Assessment for Species of Conservation Concern: Distributions and Demographics Across a Landscape Conservation Cooperative