Skip to main content
Advanced Search

Filters: Tags: 2010 (X) > Extensions: Budget (X)

59 results (121ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2013, Academics & scientific researchers, Academics & scientific researchers, All tags...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
thumbnail
Rate of global biodiversity loss increased significantly during the 20th century associated with human environmental alterations. Specifically, mismanagement of freshwater resources contributed to historical and contemporary loss of stream-dwelling fish diversity and will likely play a role in determining the persistence of species in the future. We present a mechanistic pathway by which human alteration of streams has caused the decline of a unique reproductive guild of Great Plains stream-dwelling fishes, and suggest how future climate change might exacerbate these declines. Stream fragmentation related to impoundments, diversion dams and stream dewatering are consequences of increasing demand for freshwater resources...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, AR-04, CATFISHES/MINNOWS, CO-03, CT-04, All tags...
WGFD has a quantity of GPS-based animal movement data available for processing. In order to fully integrate this data into existing statewide migration route data layers and/or to use it to develop modeled migration corridor data layers, it must be reviewed, organized appropriately, analyzed, modeled and finally structured to allow seamless integration. The objective of this proposal is to review and examine the data, organize it meaningfully, and present it initially in combination with existing migration routes in order to represent generalized big game migration corridors across the landscapes of Wyoming. This is anticipated as a “first look” product, and serve as a basis for future work to more fully analyze...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2012, CO-2, CO-3, CO-3, All tags...
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page
thumbnail
Habitat loss and fragmentation are widely recognized as among the most important threats to global biodiversity. New analytical approaches are providing improved ability to predict the effects of landscape change on population connectivity at vast spatial extents. This paper presents an analysis of population connectivity for three species of conservation concern [swift fox (Vulpes velox); lesser prairie-chicken (Tympanuchus pallidicinctus); massasuaga (Sistrurus catenatus)] across the American Great Plains region. We used factorial least-cost path and resistant kernel analyses to predict effects of landscape conditions on corridor network connectivity. Our predictions of population connectivity provide testable...
Categories: Data, Project, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, CO-01, CO-02, CO-03, CO-04, All tags...
thumbnail
The project will utilize a 4.5 million acre study area on the Montana Glaciated Plains. The objectives are to (1) identify environmental conditions and management practices that will maintain habitat for grassland birds but not impact ranching sustainability, and (2) identify areas on the landscape that have the greatest conservation potential for grassland birds. This spatial analysis will provide the framework for a rigorous assessment of management actions on the Montana Glaciated Plains.
thumbnail
Genetic, demographic, and environmental processes affect natural populations synergistically, and understanding their interplay is crucial for the conservation of biodiversity. Stream fishes in metapopulations are particularly sensitive to habitat fragmentation because persistence depends on dispersal and colonization of new habitat but dispersal is constrained to stream networks. Great Plains streams are increasingly fragmented by water diversion and climate change, threatening connectivity of fish populations in this ecosystem. We used seven microsatellite loci to describe population and landscape genetic patterns across 614 individuals from 12 remaining populations of Arkansas darter ( Etheostoma cragini) in...
thumbnail
Species populations are in a state of flux due to the cumulative and interacting impacts of climate change and human stressors across landscapes. Invasive spread, pathogen outbreaks, land-use activities, and especially climate disruption and its associated impacts—severe drought (see Figure 3 or the GPLCC), reduced stream flow, increased wildfire frequency, extended growing season, and extreme weather events—are increasing, and in some cases accelerating. These impacts are outpacing management and conservation responses intended to support trust species and their critical habitats. Our common goal is to craft successful adaptation strategies in the face of these multiple, interacting drivers of environmental change....
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, Academics & scientific researchers, CO-01, CO-02, CO-03, All tags...
thumbnail
Sea-level rise (SLR) is one of the biggest threats to the Hawaiian coastline, and resource managers of coastal wetlands in Hawai‘i must begin planning now for future impacts. The majority of these impacts are expected to occur from 2040 – 2100. PICCC funded research from the University of Hawai’i at Mānoa has provided decision makers with tools to assist in adaptively managing the impacts of SLR at three coastal wetland environments in south Maui, north Maui, and James Campbell National Wildlife Refuge. They also ranked threats on the basis of input from wetland management experts to develop maps of SLR impacts and vulnerability. The researchers concluded that decision makers must quickly act to develop and implement...
This project evaluates the effects of global climate change and sea level rise on estuarine intertidal habitat in the San Francisco Bay and the Pacific Flyway migratory waterbirds that rely on this habitat. Phase 2 of this project is a continuation of work to evaluate the effects of global climate change and sea level rise (SLR) on intertidal shoals in the San Francisco Bay Estuary and the migratory waterbirds that rely on this critically important resource in the Pacific Flyway. The primary objectives are to: 1) use downscaled global climate change models to translate SLR and climate scenarios into habitat quantity predictions through Delft3D and Dflow-FM (unstructured grid) geomorphic modeling; 2) model the response...
thumbnail
Map drained wetland basins in the PPR of Iowa and complete data set for the eastern (Region 3) of the U.S. Prairie Pothole Regionl. These data form the foundation for a newly launced inititative to develop an “Integrated Conservation Design Strategy for the PPR of Minnesota and Iowa.” This new initiative integrates wildlife habitat, water quality and flood attenuation objectives with wetland restoration potential maps to develop multi-objective wetland restoration plans for landscape-scale watershed.
thumbnail
This project highlights the potential for LCCs to facilitate collaboration among conservation practitioners and research scientists to plan for the future. A team of UMass scientists is developing a landscape change, assessment and design model to assess ecosystems and their capacity to sustain populations of wildlife in the northeastern U.S. in the face of urban growth, climate change, and other stressors. The project plays a major role in developing the science and data for two collaborative landscape planning and design efforts: 1) the pilot Landscape Conservation Design for the Connecticut River Watershed, and 2) Nature’s Network, which expands and elaborates on the data to extend to throughout New England and...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2012, 2013, 2014, All tags...
thumbnail
The project had four explicit objectives: 1) Conduct a climate vulnerability assessment of Species of Greatest Need of Conservation and major habitat types 2) Identify conservation strategies that increase resiliency or adaptive capacity, or mitigate the effects of climate change 3) Outline an adaptive management approach for informing management decisions 4) Recommend changes to existing monitoring programs and identify research needs
thumbnail
As a major threat to global biodiversity, climate change will alter where and how we manage conservation lands (e.g., parks, refuges, wildlife management areas, natural areas). As a new challenge with high uncertainty, many conservation practitioners have yet to consider how to minimize their greenhouse gas contributions (i.e., mitigation), or reduce the vulnerability of natural systems to climatechange (i.e., adaptation). This is particularly true for conservation land managers; because they are often pressed for time and resources, few have initiated long-term climate change planning and amended management activities. Furthermore, where available, climate change guidance is often coarse-level, vague, and beyond...


map background search result map search result map Conservation status, genetics, and population vulnerability of Arkansas darter (Etheostoma cragini) in Colorado Consequences of stream fragmentation and climate change for rare Great Plains fishes Implications of climate change for avian conservation in Great Plains landscapes Climate change and connectivity: Assessing landscape and species vulnerability Developing a Portfolio of Mitigation and Adaption Options for Land Managers in the Upper Great Lakes Iowa Wetland Assessment and Restorable Wetland Inventory:  Improving Wetland Restoration Planning Through Processing of Recently Collected LIDAR data for the Prairie Pothole Region of Iowa Grassland Bird Conservation on Working Landscapes: Spatial analysis linking populations to habitat State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends Decision support for climate change adaptation in the GPLCC: Creating geospatial data products for ecosystem assessments and predictive species modeling Temporal and Spatial Pattern of Sea-level Rise Impacts to Coastal Wetlands and Other Ecosystems Adapting Conservation to a Changing Climate: An Update to the Illinois Wildlife Action Plan Designing Sustainable Landscapes in the Northeast Region Conservation status, genetics, and population vulnerability of Arkansas darter (Etheostoma cragini) in Colorado Temporal and Spatial Pattern of Sea-level Rise Impacts to Coastal Wetlands and Other Ecosystems Iowa Wetland Assessment and Restorable Wetland Inventory:  Improving Wetland Restoration Planning Through Processing of Recently Collected LIDAR data for the Prairie Pothole Region of Iowa Adapting Conservation to a Changing Climate: An Update to the Illinois Wildlife Action Plan State of Wyoming Geospatial Data Management, Information Sharing and Preparation for Decision Support System Development - Migration Corridors A Monitoring Protocol to Assess Wintering Shorebird Population Trends Grassland Bird Conservation on Working Landscapes: Spatial analysis linking populations to habitat Assessing and Mapping Rare Plant Species Vulnerability to Climate Change Consequences of stream fragmentation and climate change for rare Great Plains fishes Implications of climate change for avian conservation in Great Plains landscapes Climate change and connectivity: Assessing landscape and species vulnerability Decision support for climate change adaptation in the GPLCC: Creating geospatial data products for ecosystem assessments and predictive species modeling Developing a Portfolio of Mitigation and Adaption Options for Land Managers in the Upper Great Lakes Designing Sustainable Landscapes in the Northeast Region