Skip to main content
Advanced Search

Filters: Tags: *Models (X)

5 results (56ms)   

View Results as: JSON ATOM CSV
The expansion of protected areas is a critical component of strategies to promote the continued existence of biodiversity (i.e., life at all levels of biological organization) as climate changes, but scientific, social, and economic uncertainties associated with climate change are some of the major obstacles preventing such expansion. New models of climate change and species distribution and new methods of conservation planning now make it possible to explore the uncertainties associated with climate changes and species responses. Yet few reliable estimates of the costs of expanding protected areas and methods for determining these costs exist, largely because of the many (and uncertain) determinants of these costs....
Identification of priority areas is a fundamental goal in conservation biology. Because of a lack of detailed information about species distributions, conservation targets in the Zhoushan Archipelago (China) were established on the basis of a species-area-habitat relationship (choros model) combined with an environmental cluster analysis (ECA). An environmental-distinctness index was introduced to rank areas in the dendrogram obtained with the ECA. To reduce the effects of spatial autocorrelation, the ECA was performed considering spatial constraints. To test the validity of the proposed index, a principal component analysis-based environmental diversity approach was also performed. The priority set of islands obtained...
Most populations of migrant shorebirds around the world are in serious decline, suggesting that vital condition-dependent rates such as fecundity and annual survival are being affected globally. A striking example is the red knot (Calidris canutus rufa) population wintering in Tierra del Fuego, which undertakes marathon 30,000 km hemispheric migrations annually. In spring, migrant birds forage voraciously on horseshoe crab eggs in Delaware Bay in the eastern USA before departing to breed in Arctic polar deserts. From 1997 to 2002 an increasing proportion of knots failed to reach threshold departure masses of 180-200 g, possibly because of later arrival in the Bay and food shortage from concurrent over-harvesting...
Two major approaches address the need to predict species distributions in response to environmental changes. Correlative models estimate parameters phenomenologically by relating current distributions to environmental conditions. By contrast, mechanistic models incorporate explicit relationships between environmental conditions and organismal performance, estimated independently of current distributions. Mechanistic approaches include models that translate environmental conditions into biologically relevant metrics (e.g. potential duration of activity), models that capture environmental sensitivities of survivorship and fecundity, and models that use energetics to link environmental conditions and demography. We...